Understanding Servers

IT4GIS
Keith T. Weber, GISP
GIS Director
ISU-GIS Training and Research Center

What is a server?

• Desktop
• Workstation
• Server

Functional Roles

• Data Storage
• Application Host
• GeoProcessing
• Spatial Data Management
• Website Host
• E-mail
Data Storage

• The role of hardware
 – NAS (network attached storage)
 – SAN (storage area network)
 – DAS (direct attached storage)
 – [other]

• Your role
 – Delete unnecessary data
 – Apply best data type (vector attribute tables and raster file formats)

Grid or GeoTIFF?

Data Storage: Fault Tolerance

• RAID=Redundant Array of Inexpensive Disks
• Hardware or software implementation
• Level 0,1,5,10
• Minimum four disks on server
• Hard disk types
 – SCSI, IDE, etc.
 – Hot-swappable

Data Storage: The Way Fault Tolerance Works!
Data Storage: RAID and RAIS

- Redundant Array of Inexpensive Disks
- Redundant Array of Inexpensive Servers

Hints and Tips: The 5-nines

- 99.999% of the time...
- Servers are operational and functioning
- How much down-time does this allow?
 - 5 minutes!
 - No longer even a goal!
 - Why?

Application Host

- GIS software-host server (application server)
- GIS software license server
GeoProcessing

- ArcGIS for Server software resides on server with GeoProcessing Services running
- Clients have the desktop or workstation application installed
- Large tasks are processed by the server via web interface
 - Can more fully utilize available processors and RAM

Why are Servers Faster?

- More RAM and more CPU cores (yes)
- But more importantly, a different architecture in RAM and CPU usage and allocation

GPU Processing

- Graphical Processing Units
- nVidia leads, but it all started with the demand for smooth video rendering by the gaming industry
- Graphics cards and processing
 - Processing graphics is an intensive floating-point operation (FLOP)
 - Geoprocessing can also be an intensive FLOP
- In some cases, Servers will not be faster if a good graphics card is not available
Spatial Data Management

- SDE = Spatial Database Engine
- Requires DBMS
- ArcSDE
- Spatial library organized with a RDBMS

Web Server

- IIS
 - Overview of structure on host server
 - Client access (http://giscenter.isu.edu)
- ArcGIS for Server
 - Serving maps

ArcGIS for Server

- Overview of structure on host server
- Client access (http://giscenter.isu.edu)
Types of Server Hardware

• Glorified desktops
• Standard Rack-based
• Blade
 – Rack based, but not limited to 42 Units
 – Can contain more than CPUs
• ISU’s Research Data Center (RDC)

Professional Tips

• Data folder for clients
• Data liability policy
• Use of Temp folders
• System Administration:
 – Do not allow write access from remote clients anywhere on your system!
• Security
 – Web access is principal security threat
 – FTP is a primary avenue for intrusion
 – Dynamic IP addressing

Applying Security to Your Server

• Reactive:
 – TCP/IP exclusion
• Proactive
 – Service packs
 – Updating anti-virus dictionaries
 – Disabling and uninstalling FTP
 – Firewalls
Security (cont’d)

• Backup your data
 – Mission critical
 – Critical
 – Non-critical data
• Difference between Backup and Archive

Key Concepts

• A server is best defined by its Functional Role.
• You should now know several roles for GIS servers.
• Fault tolerance addresses data integrity (information assurance).
• Proactive security measure address data security.

A Tour of the Server Room
(in under 2 minutes)
Keep the Servers Cool

- Cool aisle and hot aisle approach
- Liquid cooling (e.g., INL C3)
 - Better approach but much more expensive
 - ROI good on larger data centers (INL C3)
 - ROI poor on smaller data centers (ISU RDC)

Questions...Assignment

Get ready for the 2-minute write