Object-Oriented Design

IT4GIS
Keith T. Weber, GISP
GIS Director
ISU-GIS Training and Research Center

Topics

• During the balance of this semester, we will pursue and follow two learning threads
 – Object-relational databases
 – The Geo-Web
• These two threads are interwoven

To understand Object-Relational Databases...

• We need to understand both relational concepts and
• Object-oriented concepts (this week)
The Early Days...

- Computer programming from the caveman era

Why...Object-Oriented

- A brief history of computer programming...
- Early waterfall programming

The concept of *encapsulation*!

Today's Goals

- We will dissect "Object-Oriented" design and learn what it really is and how it relates to object-relational databases.
- At its core, we need to know
 - What is a CLASS
 - What is an OBJECT
What is a CLASS?

• A class is a computer construct representing a concept bound in a cohesive package
 – Some are concrete (i.e., real world)
 • Bank account
 • Rental item
 • Database item
 • Pile
 – Others are abstract
 • Scanner
 • Stream
 • Math

Discovering CLASSES

• Simple Rule:
 – Look for nouns in descriptions
 – Obviously not all nouns are classes
 – But at least this approach can allow one to create a list of candidate classes

What is an OBJECT

• An instance of a CLASS
• That contains meaningful data
• OBJECTS occupy memory space at runtime
 – If not, they are CLASSES
 – For example: data type vs. double
A Little Quiz...

• #1 Class or Object?

Dog

Scooby-Doo

Dog is a generalization of Scooby-Doo

A Little Quiz (cont’d)...

• #2 Class or Object?

The concept of subclass!

Animal

Dog

Scooby-Doo

Dog is a subclass of the Animal class
Animal is a generalization of Dog

A Little Quiz (cont’d)...

• #3 Class or Object?

The concept of polymorphism!

Animal

Dog

Bird
Questions so far...

Key Points

• Many classes already exist and are at our disposal when we design a database
• We use inheritance to add capabilities
 – A subclass inherits from its superclass
 – i.e., a child inherits from its parent

Additional Key Concepts

• Identify behaviors and relationships between classes
 – Inheritance
 – Aggregation
 – Dependency
• Understand class attributes and object properties
 Note: a Class attribute is not to be confused with the attributes/fields of a table.
Inheritance in the Geodatabase

Defining a CLASS

• After a CLASS has been identified we can Define:
 – Its behavior (i.e., Methods (verbs))
 – And its attributes
Relationships Between CLASSES

A key behavior is the relationship or interaction between classes.

We have learned about inheritance as one type of relationship that may exist between classes.

There are three important relationship types:

- Inheritance
- Aggregation
- Dependency

1- Inheritance

- *Is-a* relationship
- Relationship between a more specialized class (subclass) and a generalized class (superclass)
- Every...
 - Savings account is a bank account
 - DVD rental is a rental
 - Dog is a mammal
 - Parcel is a polygon

2- Aggregation

- *Has-a* relationship
 - Each Dog *has a* Paw (dog is not a generalization of paw!)
 - One class (Appendages) contains references to another class (Dog)
 - Each line *has a* vertex (actually, at least two vertices (nodes))
 - FYI... Aggregation is also known as Composition (one class is composed of things from another class(es))
Example

- Car is a Vehicle – Inheritance
- Car has a set of Tires – Aggregation

3- Dependency

- Dependency occurs when a class uses or relies on another class
- This is a Uses relationship
 - Example: an application may depend on the Scanner class to read input
 - ArcGIS depends upon the Mouse class to enable user interaction

Class Diagram

- BankAccount
 - Attributes: balance
 - Methods: deposit(), withdraw()

What type of Method behaviors are these?
This is an Example of Dependency

- The Deposit CLASS interacts with the Bank Account class to modify the Balance attribute.

ATTRIBUTES

Class Diagram

Attributes help define a given class and instantiate it into an object
Brainstorm….the Dog Class

• Name of the class =
• Methods=
 – Example of inheritance
 – Example of aggregation
 – Example of dependence
• Attributes?

Instantiate into an Object
(to make into an instance)

• Three features characterize objects:
 – **Identity**: specific attribute (property) settings have been made for
 the class. This distinguishes it from all other objects.
 – **State**: Describes the data stored in the object
 – **Behavior**: describes the method in the object's interface through
 which the object can be used

Instantiating the Dog CLASS

• CLASS (DOG)
• Attributes (Properties)
 – NAME = Scooby-Doo
 – HEIGHT = 36
 – WEIGHT = 145
• Methods
 – [Uses] bark- “Rooby roo”
 – etc.
Key Concepts

• Understand the difference between a CLASS and an OBJECT
• Understand new terms:
 – Encapsulation, polymorphism, superclass, subclass, behavior, attributes, instantiation
• Understand --and be able to differentiate-- the three types of behaviors

Database Design Concepts and Practices

IT4GIS
Keith T. Weber, GISP
GIS Director
ISU-GIS Training and Research Center

Basic Steps in Database Design

☑ Understand and document the business’ needs.
 – Problem statement
 – Business object types
 – Business relationships
 – Business constraints
☑ Create an ERM
☑ Data and process inventory
☑ Develop tuple types
☑ Tuple types to tables
 • Integrity
 • Implement the database

☑ Implement the database
Today’s goal

• Become more familiar with database design.
• Learn to read and interpret a database design (aka, schema).

Database Design

• Why spend so much time and effort?
 – Efficiency (speed, storage)
 – Client satisfaction
 – Flexibility
 – Cost savings realized

Design Considerations

• Basic steps (described earlier)
• Data types (Data Modeling)
• Normalization
• With >1 table, relationships must be examined
Relationships

- Determine where relationships exist between tables
- Determine the type of relationship that exists
 - One-to-one
 - One-to-many
 - Many-to-one
 - Many-to-Many

Generic Design Symbology

Generic Table Symbology

- Parcels Table name
- Parcel_ID Divider
- TRS
- Value
- Zoning

List of all attributes stored in this table as they will appear in the table
Generic Relationship Symbology

- Draw schema of RDB
- Determine relationship fields
- Connect

Symbolizing Relationship Type

- One-to-one
- One-to-many
- Zero?

The Relationship Type...

- Also known as
 - Cardinality (ArcGIS terminology)
 - Multiplicity (UML terminology)
Object Oriented Design

How does it fit?

Generalized Process

- Inception
- Elaboration
 - Construction
 - Transition

Elaboration Exercise

You will be building a new database listing and describing all things that are RED in color. Let's start with a brainstorming list!
Professional Hints and Tips

• Getting ready for job interviews
 – Social Media
 – Dress for success

Questions...

• Your assignment
 – Follow the ReadMe.txt document in this week’s exercise folder.