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ABSTRACT 
This study used airborne laser altimetry (LiDAR) to examine the surface morphology of two 
canyon-rim landslides in southern Idaho. The high resolution topographic data were used to 
calculate surface roughness, slope, semivariance, and fractal dimension. These data were 
combined with historical movement data (Global Positioning Systems (GPS) and laser theodolite) 
and field observations for the currently active landslide, and the results suggest that topographic 
elements are related to the material types and the type of local motion of the landslide. Weak, 
unconsolidated materials comprising the toe of the slide, which were heavily fractured and locally 
thrust upward, had relatively high surface roughness, high fractal dimension, and high vertical 
and lateral movement. The body of the slide, which predominantly moved laterally and consists 
mainly of undisturbed, older canyon floor materials, had relatively lower surface roughness than 
the toe. The upper block, consisting of a down-dropped section of the canyon rim that has 
remained largely intact, had a low surface roughness on its upper surface and high surface 
roughness along fractures and on its west face (unrelated to landslide motion). The upper block 
also had a higher semivariance than the toe and body. The topographic data for a neighboring, 
older and larger landslide complex, which failed in 1937, are similarly used to understand surface 
morphology, as well as to compare to the morphology of the active landslide and to understand 
scale-dependent processes. The morphometric analyses demonstrate that the active landslide has a 
similar failure mechanism and is topographically more variable than the 1937 landslide, 
especially at scales N20 m. Weathering and the larger scale processes of the 1937 slide are 
hypothesized to cause the lower semivariance values of the 1937 slide. At smaller scales (b10 m) 
the topographic components of the two landslides have similar roughness and semivariance. 
Results demonstrate that high resolution topographic data have the potential to differentiate 
morphological components within a landslide and provide insight into the material type and 
activity of the slide. The analyses and results in this study would not have been possible with 
coarser scale digital elevation models (10m DEM). This methodology is directly applicable to 
analyzing other geomorphic surfaces at appropriate scales, including glacial deposits and stream 
beds. 
 
Keywords: Laser altimetry; LiDAR; Landslide; Surface morphology  



Final Report: Detection, Prediction, Impact, and Management of Invasive Plants Using GIS 
 

 142

 
INTRODUCTION 
Landslides cause substantial economic, human, and environmental losses throughout the world. 
They are often triggered by other natural disasters, such as earthquakes and floods, and are 
difficult to predict. One of the greatest limiting factors in predicting and mapping landslide 
activity is the lack of understanding of scale-dependent processes, such as erosion, weathering, 
and fracturing. The literature on this topic is predominantly theoretical, although several uses of 
remote sensing and statistics to describe scale and morphometric parameters have been proposed 
(Bishop et al., 1998, 2003; Bonk, 2002; Phillips, 2005; Wallace et al., 2004). Previous studies 
have linked landslide processes with morphology and slide components (Smith, 2001; Korup, 
2004; McKean and Roering, 2004).  
 
Topographic data with a resolution relevant to the scale of morphological features of the landslide 
are necessary to understand the space-and time-depen-dent processes manifested in the slide 
morphology. Though 10-m digital elevation models (DEMs) are widely available in the U.S., 
they are not always of sufficiently fine scale for landslide mapping, nor are they widely available 
for many countries. Numerical analyses of fine scale topography can provide preliminary insight 
into landslide-scale mechanics and surface deformation (McKean and Roering, 2004). For 
example, relationships between topographic data and the surface expression of processes may 
provide insight into landslide activity, age, and material type. Previous studies have linked scale 
and morphology to weathering (Phillips, 2005), but addressing the problem of spatially and 
temporally dependent geomorphological mapping of landslides has been challenged by the lack 
of high-resolution topographic data.  
 
Several techniques have been used to study landslide morphological elements and deformation. 
Interferometric synthetic aperture radar (InSAR) can provide information on spatial patterns and 
mechanics of individual landslide blocks, leading to modeling of slide failure (Kimura and 
Yamaguchi, 2000). Though InSAR has promising potential for understanding temporal 
deformation of landslides, it is subject to several complicating factors including landslide scale 
and satellite viewing geometry (Catani et al., 2005).Global Positioning System (GPS) and other 
point data (e.g., from extensometers) can provide temporal patterns of slide velocity for landslide 
modeling (Coe et al., 2003). While GPS and InSAR can elucidate slide mechanics and constrain 
slide models, currently only high resolution laser altimetry topographic data allow for the 
quantitative geomorphometric analyses necessary to understand spatial scale-dependent 
processes. Data from small-footprint airborne laser altimetry (light detection and ranging, 
LiDAR) can provide high resolution topographic information (1 m horizontal and 15 cm vertical 
accuracy) for geomorphometry (Gold, 2003; Rowlands et al., 2003; Hsiao et al., 2004; McKean 
and Roering, 2004).  
 
The use of LiDAR for these types of quantitative analyses is relatively new; however, previous 
studies have used DEM-based geomorphometry for landslide delineation and risk (Gritzner et al., 
2001), discriminating zones of surficial processes in mountainous terrain (Bishop et al., 2003),and 
mapping landforms for structural interpretations(Ganas et al., 2005) and regional analysis 
(Bolongaro-Crevenna et al., 2004).These analyses typically included first-and second-order 
derivatives of elevation such as slope angle, slope aspect, profile curvature, tangential curvature, 
etc. A few studies have used statistical measures such as semivariograms and spatial 
autocorrelation for geomorphometry, which can provide information about topographic 
variability and surface roughness (Bishop et al., 1998, 2003; Walsh et al., 2003; Miska and Hjort, 
2005).  
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The purpose of this research is to demonstrate local topographic variability for landform mapping 
and characterization of two landslides (0.22 and 0.85 km2 in size) in southern Idaho using 
LiDAR data.  
 
We examine local topographic variability through measures of topographic roughness (referred to 
hereafter as surface roughness), slope semivariance and fractal dimension. Specifically, our 
objectives are to (i) develop the use of surface roughness and slope maps, semivariograms, and 
fractal dimensions using vector point LiDAR elevation data for identifying patterns in 
morphology, movement history, and material types for the active, smaller Salmon Falls landslide; 
and (ii) use these same morphometric parameters (surface roughness, semivariance, fractal 
dimension) to compare the active slide with the older and larger 1937 landslide. We hypothesize 
that those components of the currently active landslide that have undergone high degrees of 
deformation also have high topographic variability and that the landslide morphological 
components have higher topographic variability than the comparable components of the older 
landslide.  
 
STUDYAREA 
The Salmon Falls landslide is a canyon-rim landslide along Salmon Falls Creek, a tributary to the 
Snake River in southern Idaho (Fig. 1).The slide is located ~11 km upstream from the confluence 
of the Snake River and is ~0.22 km2 in area. The slide is part of a larger slide complex along 
Salmon Falls Creek, an area known as Sinking Canyon. Just north of the currently active 
landslide within Sinking Canyon is another slide, larger in scale (~0.85 km2) and which failed in 
1937.  
 
The Salmon Falls landslide is hypothesized to be a hybrid of a rotational–translational-style slide 
(Dorsch, 2004) of Lucerne School basalt overlying weak lacustrine and fluvial sediments, both of 
the Tertiary Glenns Ferry Formation. Movement of the slide was first observed in 1999 and was 
monitored with laser-theodolite data from 2001 to 2004; GPS data were also used to monitor the 
slide in 2003 and 2004 (Chadwick et al., 2005).  

 
Figure 1. LiDAR perspective view of Sinking Canyon. UB=Upper block, B=Body, T=Toe. 
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The Salmon Falls landslide consists of three main morphological components defined in this 
study: the upper block (~130,000 m2), main body (~60,000 m ), and toe (~25,000 m2)(Fig. 1). 
The upper block is a portion of the canyon rim and wall that has detached and moved downward 
and westward into the canyon, and consists of Lucerne School basalt with a series of fractures on 
the east and west sides. Basalt blocks have littered the slope below, contributing to a steep talus 
slope on the western side of the upper block. The main body of the slide consists of older 
landslide debris and canyon floor materials, mostly Lucerne School basalt underlain by Glenns 
Ferry Formation lacustrine and fluvial sediments. The toe of the slide, also consisting of these 
weak, unconsolidated materials, has uplifted ~1.25 m and partially dammed Salmon Falls Creek 
in two locations (Dorsch, 2004). The southernmost dam has resulted in the formation of a ~2-km 
long lake.  
 
Dorsch (2004) utilized Quickbird multispectral satellite imagery and digitized aerial photographs 
to perform a change detection analysis between 1990 and 2002 for the Salmon Falls landslide; 
this study also developed a fracture map showing the pattern of surface deformation of the 
landslide. The fracture map showed significant fractures at the toe, upper block, and southern 
boundary of the landslide. The study concluded that the Salmon Falls landslide moved 
significantly (e.g., 8-m lateral toe movement) prior to the commencement of theodolite 
monitoring in 2001 and GPS monitoring in 2003. Theodolite monitoring was performed on the 
landslide by the Bureau of Land Management (unpublished data) and Dorsch (2004) between 
2001 and 2004. The theodolite data indicate that the toe of the Salmon Falls landslide had the 
largest amount of lateral and vertical movement (1 m westward and 1.25 m upward, respectively), 
the main body had large lateral movement (1.75 m westward) but less vertical movement (5 cm 
downward), and the upper block had large amounts of lateral and vertical movement (75 cm 
westward and 1 m downward, respectively) (Dorsch, 2004). Chadwick et al. (2005) utilized five 
GPS stations to obtain information about subtle changes in movement between February 2003 
and March 2004, and converted two-dimen-sional historical (1990–2002) velocities derived from 
the Quickbird-air photo analyses to three-dimensional velocities. While the GPS data were 
collected over a shorter time period, they indicated similar movements to the theodolite data over 
the corresponding time frame (Chadwick et al., 2005).Ellis et al. (2004) assessed the hazard of 
further failures of the Salmon Falls landslide and of dam breaching and potential flooding of 
Salmon Falls Creek. They indicated that catastrophic breaching of the major landslide dam is 
unlikely given current conditions.  
 
The 1937 slide adjacent to the Salmon Falls slide has not been studied in detail; however, the 
morphology and failure patterns are similar for both. Lee (1938) proposed that the 1937 slide was 
caused by Salmon Falls Creek deepening its channel and undercutting the toe. Like the Salmon 
Falls landslide, fractures are present along the upper portion of the landslide; several basalt 
masses broke away from the canyon rim at those fractures and slid into the canyon (Fig. 1). These 
basalt masses are equivalent to the upper block of the Salmon Falls slide in this study. The body 
consists of weathered basalt blocks and upturned Glenns Ferry Formation lacustrine and fluvial 
sediments. The toe of the slide consists of the Glenns Ferry Formation lacustrine and fluvial 
sediments.  
 
METHODS 
LIDAR DATA 
LiDAR vector point data were collected over ~17 km2 of the Salmon Falls landslide and adjacent 
areas of Sinking Canyon in October 2002. The data were collected with a small-footprint (~25-
cm diameter at nadir), 25-kHz infrared laser at a horizontal spacing of ~1 m, resulting in nearly 
20 million data points. First and last laser pulse readings were recorded with an elevation, time 
stamp, and return intensity. The last pulse data were then divided by the vendor into separate bald 
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earth and vegetation classes, with the bald earth vector point data used for subsequent analysis in 
this study. The absolute vertical accuracy of the LiDAR data, with respect to a standard 
geographic coordinate system, is 16 cm (95% confidence level), as measured by the vendor using 
a ground survey of 828 GPS points. The relative or point-to-point vertical accuracy of the 
elevation data was found to be on the order of 5 cm. Relative accuracy is determined by 
measuring the standard deviation of a group of points that are known to form a flat surface. In the 
case of this study, such calculations were made using the lakes and ponds found within Sinking 
Canyon. Though infrared lasers generally reflect poorly from water surfaces, the number of 
returns in the data set was adequate to perform this analysis. 
 
GEOMORPHOMETRY 
Several techniques are used in this study to examine the landslide morphology expressed in the 
topographic data within the different landslide components and to evaluate the relationship 
between surficial expression of landslide morphology, movement rates, and material type. 
Specifically, the bald earth LiDAR data were used to generate maps of local topographic 
roughness (surface roughness) and slope, semivariograms for understanding the morphological 
and scale dependent characteristics of the topography, and fractal dimensions as a tool for 
comparing scale-dependent topographic variability of different landslide components. 
These analyses used the vector point data from the bald earth data set and were performed for 
both landslides. The vector point data were used in lieu of a DEM in order to preserve the high 
accuracy of the original data by avoiding the interpolation errors that accompany raster DEM 
generation.  
 
As stated above, the great value of LiDAR data lies in its high spatial resolution. As such, the 
focus of this study is topographic variability at fine length scales, such as those of a few meters. 
This focus led to the development of an algorithm which determines the local topographic 
variability, or surface roughness, of the LiDAR data. To accomplish this, it was necessary to 
separate the large scale topography from the fine scale variability. The vector point data were 
divided into 5_5 m grid cells, each containing 5 to 50 data points, depending on the local density 
of the data points. Within each cell, the point of lowest elevation was selected. These locally low 
elevation points, with an average spacing of 5 m by virtue of the cell size, were used to 
interpolate the baseline elevation surface. The interpolation was performed using a thin-plate 
spline. The height of each remaining data point above this surface was then calculated. The 
surface roughness of each cell was determined by calculating the standard deviation of these 
heights above the underlying surface. Such a calculation provides a measure of local surface 
roughness independent of large-scale topographic variability. The one-dimensional analogue of 
this process is shown in Fig. 2. Fig. 2a shows a cross-section of the elevation data, where the solid 
black line represents the vector point data, and the dashed line is the resulting interpolated 
underlying surface. Fig. 2b shows the local variability (the large-scale topography having been 
removed), where the grey line represents the heights of the vector point data above the underlying 
surface, and the black line shows the surface roughness, calculated as the standard deviation over 
the 5-m intervals. The 5-m width was chosen for the grid cells in order to include a sufficient 
number of data points for the calculation while maintaining a relatively high spatial resolution. 
The resulting surface roughness value (Fig. 3)of each grid cell is thus the average topographic 
variability over length scales from approximately one meter (the horizontal spatial resolution of 
the LiDAR data) to 5 m (the size of the cell).  
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Figure 2. (a) One-dimensional elevation profile of Salmon Falls landslide. Solid line is bald 
earth LiDAR data and dashed line is interpolated underlying surface. (b) Grey line is 
elevation (height) of the data points above the interpolated underlying surface. The black 
line is the one dimensional profile of surface roughness, calculated over the 5-m cell 
intervals. 
 

 
Figure 3. Surface roughness of Sinking Canyon area. White areas indicate no available 
data. 
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The map of slope values (Fig. 4) was calculated in a manner similar to the surface roughness 
map. The point vector LiDAR data were again divided in 55 m grid cells. The overall gradient (in 
both the x-and y-directions) of the points in each cell was calculated, and the slope value of each 
cell was found by summing the two gradient components. 

 
Figure 4. Slope of Sinking Canyon area. White areas indicate no available data. 

Two-dimensional semivariograms were generated for sample locations (Fig. 5) in each of the 
main landslide components to examine relative spatial variability of the topography. Following 
Carr (1995), the two-dimensional semivariogram is expressed as  

 
 
where y(h)= semivariance at lag distance h; Z(xi, yi)= data value at location i; Z(xi+h, yi+h)= 
data value at location i plus distance h; and n= number of samples in the data set. In this study, Z 
represents the vector point elevation obtained from the bald earth data set.  
 
The shape of the semivariogram plot describes the spatial dependence between samples Z as a 
function of distance h. If there is spatial dependence within the data, y(h) typically increases with 
separation distance h, and may level off or even decrease after a certain distance. The range of the 
semivariogram is the lag distance at which the semivariance reaches a plateau and spatial 
autocorrelation between samples no longer exists (Fig. 6). This range corresponds to the ceiling 
of the semivariogram, called the sill, and is often equal to the statistical variance of Z. The nugget 
is the value of the semivariance at zero lag distance and is obtained by extrapolating the plot back 
to the origin. A nonzero nugget value provides an indication of the amount of noise in the data set 
or an indication of a microspatial autocovariance at a scale below the sampling resolution (Carr, 
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1995). In essence, the semivariograms are used to show spatial trends in the topographic data 
(variability in relief) over different spatial scales (lag distances).  
 
The semivariograms were computed for the toe, body, and upper block of both landslides using 
Visual_Data, a Windows-based Visual Basic program (Carr, 2002).  The number of samples 
(elevation postings) included 5322 for the toe, 32,223 for the body, 20,781 for the upper block of 
the currently active slide and 32,974 for the toe, 32,653 for the body, and 79,222 for the upper 
block of the 1937 landslide. The largest possible number of samples was included in each data set 
in order to characterize the overall topography without sample size bias. The sample locations 
used for the semivariogram and fractal analyses for the 1937 slide were chosen to best represent 
equivalent features in the currently active slide. The semivariograms were plotted to a lag 
distance equal to ~50% of the smaller size dimension of the sample. Two-dimensional omni-
directional semivariograms were computed, averaging over all spatial directions, for each of the 
landslide components. Omnidirectional semivariograms were chosen over directional 
semivariograms in order to compare the relative average spatial patterns within each landslide 
component. The range, mean and variance of each of the subsets were also computed to compare 
to the semivariograms (Table 1). 
 

 
Figure 5. Subsets of 1937 and Salmon Falls landslides for semivariogram and fractal 
anlaysis. Outer box is area used for surface roughness and slope in Figs. 3 and 4, 
respectively. UB=Upper block, B=Body, T=Toe. 
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Figure 6. Semivariograms for Salmon Falls and 1937 landslides at lag distances b20 m. Inset 
is a graphical display of a spherical semivariogram model. 

Table 1. Statistical moments of landslide components. 

 
 
Topographic data can be described as self-affine random fractals (Turcotte, 1997), allowing 
fractal dimension to be used to understand the topographic roughness. In general, the greater the 
fractal dimension of the surface, the brougherQ the surface is. The fractal dimensions were 
computed in this study for understanding the degree of complexity and spatial autocorrelation in 
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the topography. Fractal dimensions were computed using the semivariogram method where the 
fractal dimension D is estimated by 

 
where m=the slope derived from the log(c(h)) versus log(h) plot. The log–log plots were 
examined for multi-fractality, as signified by scale-breaks (changes in the slope, and therefore in 
fractal dimension). In order to verify linearity in the log–log plots, R2 values were computed. 
Fractal dimension was computed from the slope between each data point, starting at the lowest 
lag and ending at the lag distance where the first break in slope occurred (R2 value lower than 
0.99). The fractal dimension was not computed beyond a lag distance of ~20 m for the body of 
the currently active landslide and 90 m and 30 m for the body and upper block, respectively, for 
the 1937 landslide because of scale-breaks. More information detailing methods on computations 
of fractal dimension can be found in Carr (2002) and Carr and Benzer (1991).  
 
RESULTS
SURFACE ROUGHNESS AND SLOPE 
Although the absolute accuracy of the LiDAR data is 16 cm, relative accuracies of a few 
centimeters allow for the computation of surface roughness values that are less than the absolute 
accuracy. The surface roughness values for the Salmon Falls and 1937 landslides range from 
b5cmto N1 m with higher surface roughness near the toes of the slides and the fractured edges of 
the upper blocks. Lower surface roughness is exhibited in the relatively un-deformed body of 
each slide and the upper surface of the upper block of the currently active landslide (Fig. 3). 
Within the active landslide, surface roughness ranges from b5 to 100 cm for the upper block 
(reflecting the inclusion of both the flat, un-deformed surface and the talus slope at the western 
edge), 5 to 50 cm for the main body (with localized areas up to 100 cm), and ~40 to 100 cm for 
the toe. In the 1937 slide area, the numerous ridges that comprise the upper block region have 
high surface roughness values (20–100 cm), grading to lower surface roughness values in the 
main body of the landslide debris (b40 cm). Surface roughness increases near the toe of the slide, 
with values up to 100 cm (Fig. 3).  
 
The slope calculation (Fig. 4) resulted in high slopes for several portions of the upper block 
region and, to a lesser degree, toe area comprised of Glenns Ferry sediments in both landslides. 
The failed upper blocks of the 1937 slide and the upper block of the currently active landslide 
have slopes up to 458. Failed basalt blocks in the body of the 1937 slide also form ridges of high 
slopes (308to 458) that are oriented to the NW in the northern portion, to the west in the main 
portion, and to the SW in the southern portion of the slide. The toes of both slides have high 
slopes (up to 458) consisting of over-steepened sediments.  
 
SEMIVARIOGRAMS 
The shape of the semivariograms for the toe, body, and upper block of the currently active 
landslide are similar to a parabolic form, indicative of continuity of the elevation variable (Figs. 6 
and 7).At short lag distances (b20 m) the semivariance of the upper block is larger than that of the 
body and toe. At lag distances N20 m the semivariance of the upper block appears to have no 
limit: the elevation properties have no finite variance (the semivariogram is unbounded). Overall 
the semivariance of the upper block indicates high variability in the topographic data over spatial 
scales of ~50 m. The body semivariance is slightly larger than that of the toe, with increasing 
difference between the two with increasing lag distance; however, the semivariance of the toe 
supersedes that of the body at a lag distance of ~70 m and rises to a sill at a range of ~85 m. This 
indicates that beyond ~85 m there is no longer a spatial relationship between the topographic 
data. Note that the toe semivariogram is plotted at lag distances over the 50% break-point of data 
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pairs (~50 m) for comparison with the other data sets. The semivariance of the body nearly 
reaches a sill at a lag distance of ~130 m, indicating that beyond this distance there is little spatial 
autocorrelation in the topographic data.  
 
The semivariograms of the 1937 landslide also have a parabolic form at short lag distances (<20 
m) and none reach a sill (Figs. 6 and 7).The upper block has the largest semivariance of the 1937 
plots and is very similar to the semivariogram for the upper block of the currently active landslide 
at lag distances <20 m. At lag distances larger than ~20 m, the semivariance of the 1937 upper 
block is lower than that of the currently active landslide indicating that at this spatial scale, the 
topography of the 1937 upper block is more uniform. The semivariance of the toe of the 1937 
slide is very similar to that of the toe of the active landslide; however, it does not reach a sill and 
appears to continue to rise with larger lag distances. The semivariance of the 1937 body is the 
lowest, indicating similar topographic data at a larger spatial scale (lag distance) than the other 
data sets. 

 
Figure 7. Semivariograms for Salmon Falls and 1937 landslides. 

 
Figure 8. Fractal dimensions for the Salmon Falls landslide. 
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FRACTAL DIMENSION 
Fractal dimensions were plotted against h (Figs. 8 and 9). In general, the fractal dimension of the 
toe is higher than that of the body and upper block of the currently active landslide, ranging from 
approximately 2.45 to 2.15. The fractal dimension of the upper block dips below 2.0 (fractal 
dimensions of surfaces are expected to be between 2 and 3) at several lag distances (e.g., 5 and 50 
m). This result is not surprising because the calculation of fractal dimensions using the 
semivariogram method is a function of slope and the log–log semivariogram is steep (over 2) in 
these areas. These values are retained herein for descriptive purposes; further discussion of fractal 
values beyond expected limits can be found in Carr and Benzer (1991). Similar to the active 
landslide, the fractal dimension of the toe is greater than that of the body and upper block of the 
1937 landslide; however, at hof ~10 m, the fractal dimension of the upper block increases and is 
higher than both the toe and body. The fractal dimension varies widely with lag distance; 
however, in both data sets, lower fractal dimensions occur near h of ~10 m.  

 
Figure 9. Fractal dimensions for the 1937 landslide. 

 
DISCUSSION
COMPARISONS BETWEEN CURRENTLY ACTIVE AND 1937 LANDSLIDES 
The surface roughness calculations and field observations of the currently active landslide 
indicate that the upper block and toe have relatively higher topographic variability than the body 
at scales relevant to the landslide components (~5 to 130 m). The semivariograms indicate a 
higher semivariance (and lower spatial autocorrelation) for the upper block than for the body and 
toe at the modeled lag distances of the active slide. While the high semivariance isn’t a direct 
measurement of surface roughness, it does indicate a lack of similarity between topographic 
values in the upper block. The upper block is defined by the stark differences between the west 
talus slope and the smooth, but fractured upper surface. The semivariance of the toe is lower than 
the body of the active slide, consistent with the comparison of statistical variance; however, at a 
scale of ~85 m, the toe semivariance exceeds that of the body, indicating a lower spatial 
autocorrelation in the toe topographic data. While the high surface roughness from the LiDAR 
imagery and field observations of upturned sediments in the toe indicate deformation and rough-
ness at small scales (~5 m), the semivariance is lower than that of the smoother body. The 
semivariogram of the body has a larger range and sill than the toe, indicating lower spatial 
autocorrelation at larger lag distances. This is interpreted as higher spatial variability as a function 



Final Report: Detection, Prediction, Impact, and Management of Invasive Plants Using GIS 
 

 153

of distance in the topographic data and shouldn’t be correlated to simply higher surface 
roughness. Field, theodolite, and GPS observations show little vertical movement or fracturing on 
this part of the slide, yielding lower surface roughness values.  
 
The fractal dimensions can also be considered a measure of the “roughness”of the topography 
(Klinkenberg, 1992; Lifton and Chase, 1992; Carr, 1995). The highly variable fractal dimension 
data set in this study is somewhat ambiguous; yet still useful for relative comparisons between 
landslide components. For example, while the fractal dimension of the toe is larger than the body 
and upper block for both landslides (indicating a “rougher”surface), the fractal dimension of the 
body is also higher than that of the upper block in the currently active slide. The steep slope of the 
upper block semivariograms result in low fractal dimensions for both slides. The smoother upper 
surface of the upper block in the active slide may outweigh the influence of the rough west-facing 
talus slope when comparing to the body. These results indicate that though relative comparisons 
may be made between data sets, caution should be exercised in correlating fractal dimension to a 
“rough” or “smooth” topography.  
 
The weak unconsolidated toe material has a higher surface roughness than many areas of the 
body in the active slide. This portion of the landslide also demonstrated the highest vertical and 
lateral motion during the time of monitoring, resulting in greater disruption of the surface. The 
surface roughness is inherently linked to the material type and type of motion (upward thrusting 
versus lateral sliding). As the upper block drops down and away from the canyon wall, the body 
and the toe are pushed westward. The material of the toe is confined by the west canyon wall, 
which causes the slide to be thrust upward there. The sediments in the toe are weak, and as this 
motion is inherently disruptive to the surface, it results in large cracks and a rough, uneven 
surface. The main body, composed of canyon floor and canyon wall materials that have remained 
largely intact because of the primarily lateral motion of this part of the slide, has a smoother 
surface than the toe and the upper block. The steep talus slope of basalt on the western 
unconfined side of the upper block and the fractures within the upper block result in high surface 
roughness. However, the high surface roughness on the west face is related to rockfall processes 
independent of the landslide motion. Though not instrumented, this area of the upper block likely 
had similar movement patterns as the flat, instrumented surface. The low fractal dimension of the 
upper block is likely the result of the difference between the disaggregated canyon wall basalt and 
the upper intact surface of the block. The upper block exhibited significant downward motion and 
slightly less lateral motion. The motion and the unconfined west face of the upper block resulted 
in high topographic variability along the west face and in highly fractured areas (Fig. 10).  
 
The fracture patterns of the active landslide (Dorsch, 2004) are consistent with the surface rough-
ness maps, as areas with tension cracks and fractures (specific locations on the toe and upper 
block) also have high surface roughness (Fig. 10).The unconsolidated material of the toe leads to 
large cracks and high surface roughness. The fractures in the basalt of the upper block also result 
in localized high surface roughness. The tension cracks and fractures near the southern edge of 
the landslide are less distinct in the surface roughness map, likely because of the small size of the 
cracks and the lack of vertical offset on these primarily strike-slip fractures.  
 
The data from the 1937 slide reveal similar patterns to those from the active landslide; however, 
movement data are not available to correlate to surface roughness and spatial patterns in the 
topographic data. Furthermore, the 1937 slide is approximately four times as large, resulting in 
larger spatial characteristics and patterns that make comparisons challenging. This example of 
scale dependency is one of the most important aspects in linking landslide processes to 
morphology. And while this study uses the 1937 landslide as a comparative feature to the active 
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slide, the comparative parameters (e.g., surface roughness) can be used as first-step mapping tool 
(Fig. 11).  
 

 
Figure 10. Fracture map from Dorsch (2004). Tension cracks and fractures on upper block 
and toe correspond to high surface roughness areas in Fig. 3. Cracks and fractures near 
access trail are not as easily identified in Fig. 4. 
 
In comparison to the active landslide, the 1937 toe has a similar surface roughness and 
semivariance at short lag distances. At larger lag distances the semivariogram of the toe has a 
shallower slope, demonstrating slightly higher spatial autocorrelation at larger scales (60–100 m). 
The broader toe (and topographic expression) of the 1937 slide is likely from secondary slumping 
in the toe sediments. The LiDAR derived surface roughness of the body of the 1937 slide is lower 
and more uniform than that of the active slide. For example, the surface roughness of the 1937 
slide’s body is consistently b40 cm, while some areas of the body of the active landslide have 
surface roughness values as large as 100 cm. The higher surface roughness values of the active 
landslide are expected, given the younger age of the slide, and likely result from less weathering 
and surface erosion as well as less dust deposition and organic accumulation. This implies that 
surface roughness may be one method to assess relative ages between slides that have similar 
material types. The semivariogram of the body of the 1937 slide demonstrates lower spatial 
autocorrelation than the active landslide at all modeled scales, indicative of low spatial variability 
of the topographic data. As expected, the elevation variance of this subset is also smaller than that 
of the toe and upper block (Table 1). The repetitive down-dropped blocks of the canyon wall in 
the 1937 slide display similarly high surface roughness in the LiDAR-derived data as the upper 
block (largely still intact) of the active slide.  
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Figure 11. Mapped boundaries of the toe, body, and upper block regions of the 1937 slide. 
UB=Upper block, B=Body, T=Toe. 
 
The 1937 upper blocks detached and moved rapidly away from the canyon wall, resulting in 
larger-scale rock fall and more extensive fracturing than in the Salmon Falls slide. The repetitive 
pattern of down-dropped upper blocks was captured in the sample used for the semivariogram. 
However, samples used in the semivariogram calculations that were taken near the canyon wall 
where the topography has higher variability resulted in nested semivariograms (not shown) and 
are examples of the location-and scale-dependency of semivariograms. As the fractures in the 
upper block and canyon rim of the active slide continue to cut back towards the east, we expect 
the upper block will attain a statistically similar morphology to that of the 1937 slide. This type of 
spatial information, especially over time, can provide inferences about the age and movement 
activity of landslides. The challenge is quantitatively relating changes in properties of topography 
with landslide age and rates of motion. These relationships hold promising information for 
understanding landscape development on both a “local” and “regional” level for landslide and 
other geomorphic processes (e.g., erosion, weathering; see Phillips, 2005).However, comparative 
analysis is complicated by the scale-dependent processes.  
 
As with the active landslide, the fractal dimensions of the 1937 slide are higher in the toe than in 
the body. Furthermore, the fractal dimensions for the toe and body are slightly smaller than those 
for the active landslide. The fractal dimension of the upper block does exceed that of the body 
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and toe at high lag distances (>10 m) in the 1937 slide. This result can be observed in Fig. 5, 
where the upper block consists of at least three down-dropped blocks with rough west faces in 
comparison to the smoother, lower frequency ridges of the body.  
 
The surface roughness, semivariance, and fractal dimension results indicate that the active 
landslide is similar in topographic expression to the older landslide. The surface roughness values 
for each of the landslide components are comparable between the two slides. Even visual 
interpretation of the surface roughness (Fig. 3) of both slides distinguishes between the rougher 
upper blocks, smoother areas in the main bodies, and rougher toes. The high surface roughness 
ridges in the older slide are equivalent to westerly rotated versions of the upper block in the active 
slide. These segments were originally flat with The 1937 upper blocks detached and moved 
rapidly rough west talus faces, but were then rotated on a away from the canyon wall, resulting in 
larger-scale listric plane. The western edges of these ridges are rock fall and more extensive 
fracturing than in the equivalent to the west face of the upper block on the active slide and the 
smoother east sides of these ridges are equivalent to the surface of the upper block. From this we 
can expect the upper block of the active slide to rotate and form a tilted ridge. Likewise from 
studying the 1937 slide and understanding the motion of the active slide, we can expect the body 
of the active slide to remain intact and smooth with increased weathering, erosion and dust 
deposition. The slope-gener-ated data (Fig. 4) indicate that failed basalt rims in the 1937 slide, 
and to a lesser degree Glenns Ferry sediments in both slides, have steep slopes. The basalt rims in 
the 1937 slide provide information about the scale of fracturing and failure. The rims are oriented 
NW and W, indicating the orientation of fractures in the basalt on which motion initiated. These 
rims are ~400 m in length from north to south. This is comparable to the upper block of the active 
landslide (500 m), further indicating that the younger landslide is likely demonstrating similar 
failure mechanics as the 1937 slide.  
 
Results of semivariogram analyses indicate that, in general, the active slide has a higher 
semivariance and lower degree of spatial autocorrelation than the older slide. While there are 
some exceptions to this (e.g., at lag distances b8 m in the upper blocks and lag distances between 
12 and 50 m for the toes), the differences in semivariance between the slides at these lag distances 
are very small. These findings indicate that the active slide has higher topographic variability as a 
function of distance. This can be explained by the smaller scale processes of the landslide and the 
younger age in comparison to the 1937 slide. These results indicate that the semivariograms can 
be useful for relative assessments of processes and age between landslides.  
 
The fractal dimension results also indicate potential for classifying between landslide scales and 
ages. As previously stated, fractal dimensions of the body and toe of the 1937 slide are smaller 
than comparable components of the active slide at a scale near 10 m. Yet this doesn’t hold true 
for the upper block where the steep semivariance results in extremely low fractal dimensions in 
the active slide. We may expect the fractal dimensions to become more similar between the two 
slides over time at small scales (~10 m), as the semivariograms of the active slide become closer 
to those of the 1937 slide. Because our analysis of fractal dimension was based on our 2-D 
semivariograms, the fractal dimensions represent a surface (rather than a profile). For our 
purposes, using fractal dimension to demonstrate the relative difference in topographic relief 
patterns (in space) between landslide components and between older and younger landslides, the 
semivariogram analyses were sufficient. Alternative methods, such as using the spectral-
wavelength plot of a two-dimensional spectral analysis to discern smooth, unfailed terrain from 
relativel y rougher failed terrain, could also be useful (McKean and Roering, 2004).  
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LINKAGES BETWEEN MOTION, MATERIAL, AND TOPOGRAPHY 
Our first hypothesis, that the high motion areas of the active landslide were linked to high surface 
roughness, was valid for the toe. Additionally, portions of the upper block have a high surface 
roughness due to landslide related fracturing. However, the west talus face of the upper block has 
the highest surface roughness in the landslide area, but its roughness is a result of rockfall rather 
than landslide motion. With this important exception, the study indicated that both type of motion 
and type of material play key roles in the surface expression and resulting surface roughness. Our 
second hypothesis, that the 1937 slide had a lower or bsmootherQsurface roughness than the 
active slide, was proven correct through the surface roughness calculations. Further, because we 
found that material type, motion, and surface roughness were linked, the comparisons between 
the landslide data sets are significant for mapping the 1937 slide. The lithology and canyon rim 
slopes of the 1937 slide are similar to the active slide. These similarities, coupled with the results 
of the numerical analyses of the topography, allowed us to provide a provisional map of the toe, 
body, and upper block boundaries of the 1937 slide (Fig. 11). Note that the upper block comprises 
many of the failed basalt blocks originating from the canyon wall. The northern boundary of the 
slide is difficult to discern because of another canyon rim slope failure just to the north. Likewise, 
the southern boundary of the 1937 slide in relation to the northern boundary of the active slide is 
obscure. More detailed analyses such as edge and linear effects in the topographic data could be 
explored to help map these boundaries with more confidence.  
 
CONCLUSIONS 
High spatial resolution, bald earth LiDAR data provide new opportunities for mapping landslide 
morphology through visual interpretation and numerical analysis. Surface roughness and slope 
calculations, semivariogram analysis, and fractal dimension all provide insight into the landslide 
morphology and linked slide processes. The results of this study show that topographic data with 
postings of 1 m or less are appropriate to conduct these analyses on landslides similar in size to 
the active Salmon Falls landslide. Vertical resolution on the order of 5 cm must be available to 
depict subtle changes in surface roughness of landslide components. Caution must be exercised 
when using semivariance and fractal dimensions to understand topographic variability because 
sample location and scale affect results. However, these tools provide useful relative comparisons 
of topographic expression in order to understand scale-dependent processes. Our topographic 
analyses indicate that different morphological components of the currently active landslide have 
different measurable, but comparable, surface characteristics, likely because of the type of 
material (e.g., weak sediments vs. intact basalt) and type of motion (e.g., disruptive thrusting and 
fracturing in the toe vs. the coherent down-drop-ping of the upper block). High rates of vertical 
and lateral motion were correlated with both the weak, unconsolidated toe materials having high 
surface roughness, as well as with the basalt upper block having both low (e.g., upper surface) 
and high (e.g., fractures and talus slope)surface roughness. However, the high surface roughness 
of the talus slope is not a function of landslide motion or activity. While the upward motion of the 
weak toe resulted in a rough disruptive surface, the downward motion of the upper block resulted 
in a smooth surface with rough fractures. Smaller vertical motion and less surface disruption were 
associated with a relatively smoother topography in the body. The topographic analysis also 
indicates that the active landslide has a similar failure mechanism to that of the 1937 slide. 
Though in situ movement data are not available for the 1937 slide, the statistical analysis for the 
toe and main body produced similar results as those for the active landslide. The blocks of the 
1937 slide that dropped from the canyon rim provided a rougher morphology than the upper 
block of the active landslide. This information allowed us to map the toe, body, and upper blocks 
of the 1937 slide without large amounts of field reconnaissance and ground instrumentation. 
Though the 1937 slide is much larger in scale, the topographic expression provided by the LiDAR 
data helps to link related processes between the two landslides. High resolution topographic data 
have the potential to differentiate failure zones within a landslide and provide insight into the 
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material type and movement. This type of analysis is also relevant to other geomorphic 
applications, such as understanding stream bed topography, fluvial terrace morphology, and 
glacial landform degradation.  
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