
Abstract
Many factors influence classification accuracy, and this
study assessed detection thresholds for various sub-pixel
targets using QuickBird multispectral imagery. Six iterations
of maximum-likelihood classification were used to deter-
mine classification accuracy for 100 spectrally unique
targets randomly placed over a semiarid rangeland site.
Error matrices were calculated using independent validation
sites and producer’s, user’s, and overall accuracy, Kappa
Index of Agreement, and transformed divergence were
analyzed to compare the performance of each classification
and determine detection thresholds. Results indicate a
strong relationship between target size and classification
accuracy (R2 � 0.94) as well as an increasingly prominent
role played by training site selection as target size
decreased. Strong spectral separability and good classifica-
tion accuracies were achieved for targets 	25 percent cover.
Sub-pixel targets 
25 percent in size were not detectable.
This study highlights the effect of target size upon classifica-
tion accuracy and has direct implications for invasive plant
research and rare target detection.

Introduction
Much has been written about the effects of various input
parameters and processing decisions on classification accu-
racy. Researchers have investigated and described the
(a) selection of appropriate classification algorithms (Foody
and Arora, 1997), (b) effects of orthorectification (Cheng et al.,
2003; Robertson, 2003; Toutin and Chenier, 2004; Wijnant
and Steenberghen, 2004; Parcharidis et al., 2005), (c) effect of
mis-registration between image layers (Townshend et al.,
1992; Dai and Khorram, 1998; Stow, 1999; Roy, 2000; Verbyla
and Boles, 2000; Wang and Ellis, 2005), (d) influence of
spectral resolution (Mehner et al., 2004), (e) effects of co-
registration between training sites and imagery (Weber, 2006;
Weber et al., 2008), (f) influence of atmospheric anomalies
and correction processes (Lillesand and Kiefer, 2000), and
(g) effects of training site purity relative to minimum ground
cover threshold (Mundt et al., 2006). The result of these and
other efforts has allowed geospatial scientists to construct a
fairly complete error budget, and, thereby better understand
and interpret image classification results. The latter topic is
the focus of this paper with emphasis upon the detection
threshold of sub-pixel targets.

In semiarid environments, the ability to detect sub-pixel
targets is critical because landscape features such as sage-
brush, shrubs, invasive weeds, and bare soil are frequently
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encountered in relatively small patches (i.e., 1 to 4 m2). Past
research investigating detection limitations in remote sensing
have frequently focused upon invasive plants and have
reported detection thresholds from 10 percent cover (Parker-
Williams and Hunt, 2002) to 40 percent cover (Glenn et al.,
2005; Weber et al., 2006) for leafy spurge (Euphorbia esula L.),
30 percent cover for hoary cress (Cardaria draba) (Mundt
et al., 2006), and 20 percent cover for Rush skeletonweed
(Chondrilla juncea) (Mundt et al., 2006). In all cases, detection
thresholds in these studies were determined using hyperspec-
tral imagery with high spatial resolutions (e.g., 5 m).

The purpose of this research was to experimentally
address the following questions related to the reliable
detection (i.e., �75 percent overall accuracy; Goodchild
et al., 1994) of spectrally unique, patchy, and rare targets
within semiarid rangeland ecosystems: (a) what is the
detection threshold (100 percent, 50 percent, 25 percent,
5 percent, and 1 percent of a pixel) that can be achieved
using high spatial resolution multispectral imagery?, and
(b) what is the impact of target size and site selection on
sub-pixel target detection and classification accuracy? To
address the former objective, various measures of classifi-
cation accuracy and spectral separability were used
including transformed divergence, error matrices, and the
Kappa Index of Agreement (KIA). The latter objective
(b) was addressed by exploring the variability of the above
measures following six iterations of each classification
trial and by examining the relationship between KIA and
target size using linear regression analysis.

Methods

Study Area
The experiment was performed in sagebrush-steppe
rangelands of southeast Idaho approximately 30 km south
of Pocatello, Idaho at the O’Neal Ecological Reserve. This
50 ha site contains sagebrush-steppe upland areas located
on lava benches. The Reserve receives 
38 cm of precipi-
tation annually (primarily in the winter) and is relatively
flat, with a mean elevation of approximately 1,400 m
(1,401 m to 1,430 m). The dominant plant species is big
sagebrush (Artemisia tridentata) with various native and
non-native grasses, including Indian rice grass (Oryzopsis
hymenoides) and needle-and-thread (Stipa comata) present
throughout the Reserve.
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Field Data
Throughout the study area, 20 target locations were ran-
domly generated for each of five target sizes (n � 100)
(Table 1). Bright blue tarps were placed at each of these

locations using the following set of criteria established for
final placement in the field: (a) no part of the tarp was
placed beneath vegetation, (b) tall vegetation (	1 m) that
could cast a shadow on a portion of the tarp during image
acquisition was not located near the tarps (�/�2 m), and
(c) tarps were installed flat and horizontal to avoid deforma-
tion and changes in their apparent size within the imagery
(Figure 1). All blue tarps were secured into the ground using
four to eight 25 cm spikes approximately one month prior to
the acquisition of remotely sensed imagery. The location of
the tarps was recorded by occupying each site until 120
positions were acquired with a Trimble GeoXH GPS receiver.
The averaged positions were post-process differentially
corrected using data from five base stations each within
80 km of the Reserve. Resulting horizontal positional accu-
racy was �/� 0.3 m (95 percent confidence interval [CI]).
An equal number of non-target points (n � 20) typical of
the semiarid rangelands found at the Reserve (i.e., sites

TABLE 1. PERCENT TARGET SIZE AND ACTUAL
TARGET SIZE OF THE FIVE CLASSES USED IN THIS

STUDY (NOTE: QUICKBIRD MULTISPECTRAL IMAGERY
HAS A SPATIAL RESOLUTION OF 2.40 � 2.40 M)

Target class (%) Actual size (m)

100 2.40 � 2.40
50 1.70 � 1.70
25 1.20 � 1.20
5 0.55 � 0.55
1 0.24 � 0.24

Figure 1. Map of study area with location of tarps (target sites) and location of 
non-target sites (Note: the size of the training sites are not drawn to scale).
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dominated by big sagebrush) were randomly located through-
out the study area and used as non-target training sites for all
analyses and classifications. This was done to eliminate
variability and bias due to disproportionate sample sizes.
None of these points fell within 10 meters of a target site.

To better understand the results of subsequent classifi-
cation, the spectral properties of the blue tarps targets were
compared to the spectral properties of the common range-
land elements found at non-target sites using an Analytical
Spectral Device (ASD) FieldSpecPro hand-held field spectro-
radiometer. Measurements were made during a sunny day
(without clouds) at �1 hour of solar noon prior to image
acquisition. For each target, between 15 and 25 spectral
recordings were taken. Spectral comparison included blue
tarps, bare soil, basalt, low sagebrush (Artemisia arbuscula),
and big sagebrush (Artemisia tridentata).

Imagery
Standard QuickBird imagery (06 July 2009) was delivered by
DigitalGlobe Corporation and projected into Idaho Trans-
verse Mercator (NAD83) using nearest neighbor resampling to
match the reference system of all other GIS data used in this
study. The imagery was corrected for atmospheric effects
using Chavez’ Cos(t) model in IDRISI Taiga’s ATMOSC
module (Chavez, 1996). To improve georegistration of the
imagery and co-registration between the imagery and ground
truth locations (Weber et al., 2008) within the relatively
small, flat study area, five permanent ground control
platforms were used. Each platform was 2.4 m � 2.4 m
in size and stood 1.2 m above the ground. During satellite
image acquisition periods, highly reflective silver tarps were
tightly secured to the platforms. The location of the plat-
form’s corners were recorded and processed in the same
fashion as noted above. All five ground control platforms
were used to georectify the QuickBird imagery using first
order, affine transformation and nearest neighbor resampling
(RMSE � 0.678).

Analysis
To determine how small a target can be detected using high
spatial resolution QuickBird multispectral imagery, a series
of supervised presence/absence classifications were per-
formed. To accomplish this, a geodatabase feature class
containing 100 points representing the location of the
blue tarp sites was created. This blue tarp feature class
was randomly resampled without replacement to select
50 percent of the points in each target size class (n � 5
target size classes). This process was repeated six times
(Table 1) to achieve a better estimation of classification
accuracy (Weber and Langille, 2007). A single resampling
event was used to randomly select 50 percent of the non-
target training sites (n � 10). The remaining non-target sites
were used as independent validation sites.

Bootstrap resampling was used in this study (Good,
2006) and for each target class ten points were randomly
selected while the remaining ten points were reserved for
validation. Ten non-target points were randomly selected
and these same points were used in every classification trial
while the remaining ten non-target points were used in all
validations. To eliminate between-trial variability in the
non-target class, iterative resampling of non-target sites was
not performed.

The result of each resampling iteration produced two
datasets for use in the classification process. The first
dataset contained 20 training sites (ten blue tarp training site
points per size class and ten non-target training site points),
and the second contained 20 validation sites (ten blue tarp
points per size class and ten non-target points). Each
individual dataset was saved as a shapefile (n � 30; six

iterations of five size classes) and used to extract spectral
signatures from QuickBird imagery (bands 1 through 4) at
the locations of the training sites using IDRISI’s MAKESIG
module. Spectral signature extraction is a required step
for maximum likelihood classification, and the resulting
signature files statistically describe the spectral characteris-
tics (minimum, maximum, mean, variance, and covariance)
of those pixels identified as a target (i.e., the pixel contains
a blue tarp) or non-target site (i.e., the pixel was a typical
sagebrush-steppe rangeland site).

Spectral signatures were evaluated using the SEPSIG
module of IDRISI which calculated a transformed divergence
score (Richards and Jia, 2006). This score was used to
indicate the separability of target and non-target sites for
each spectral signature file (n � 30). Using a constant value
of 2,000, spectral endmembers with separability values
exceeding 1,600 were considered good candidates for
successful differentiation during the classification process.
Regardless of the separability score, all maximum likelihood
trials were completed (n � 30).

A series of maximum likelihood classifications
(Richards and Jia, 2006) were performed using IDRISI
(MAXLIKE) and validated using the ERRMAT module,
which calculates both a standard error matrix (Congalton
and Green, 2009) and KIA (Cohen, 1960; Titus et al., 1984;
Foody, 1992; Monserud and Leemans, 1992). A cumulative
error matrix (CEM) was developed by calculating the sum of
each individual error matrix within each target size class. To
determine the statistical difference among classification
results, the CEM for a given target class was compared with
the CEM of all other target size classes using variance of KIA
by calculating a pairwise Z-statistic following Congalton and
Green (2009) (Equation 1).

(1)

where K1 and K2 are the KIA’s for error matrices 1 and 2 and
var(K1) and var(K2) are estimates of variance for matrices 1
and 2. The Zpairwise critical value at the 95 percent confi-
dence interval is 1.96.

Results and Discussion

Detection Threshold
Transformed divergence separability scores of the spectral
signature files for the 100 percent and 50 percent target
classes (n � 6 signature files/target class) exceeded the
threshold value of 1,600 ( � 1998.8 and 1991.4 for the
100 percent and 50 percent classes, respectively), indicat-
ing the spectral signatures of those targets were statistically
differentiable from the signatures of non-target sites.
This result compares well with results from spectrora-
diometer analysis indicating the blue tarps were spectrally
unique and separable from the adjacent matrix of features
(Figure 2). Four of six (67 percent) signature files for the
25 percent target class had transformed divergence scores
in excess of 1600 ( � 1657.8), suggesting that under most
instances targets with 25 percent cover were differentiable
from non-target sites. Since the same non-target sites were
used in all cases throughout this study, no effect can be
inferred related to sub-sampling non-target sites. Rather,
the observed difference in separability must be due to the
specific combination of target training sites selected and
the ground conditions within the remainder of the pixel
not covered by the blue-tarp target. Only one of six signa-
ture files for both the 5 percent and 1 percent target cover

x

x

Zpairwise �  
ƒK1 � K2 ƒ

3var(K1) � var(K2)
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Figure 2. A comparison of spectral signatures from common rangeland targets and the
artificial blue tarps used in this study. Signatures were acquired with a spectroradiometer
and the mean signatures of n (15 to 25) spectra are shown. QuickBird image bands are
shown in grey for reference.

classes had transformed divergence scores exceeding 1600
( � 1172.0 and 1242.3 for the 5 percent and 1 percent
classes, respectively) suggesting that a reliable classifica-
tion at these cover levels was highly unlikely.

Following six iterations of maximum likelihood
classifications, mean producer’s accuracy for the 100
percent blue tarp target class was 75 percent, mean user’s
accuracy was 92 percent, and mean overall accuracy was
84 percent (Table 2). While all measures of accuracy were
reduced for the 50 percent target class ( overallx

x
accuracies for the 5 percent and 1 percent target classes
were 
65 percent in all cases corroborating well with the
results of separability testing reported above.

Target Size and Site Selection
Resulting mean KIA statistics reported a similar trend
(Figure 3) of decreasing agreement with decreasing target
size (R2 � 0.94) but also indicated that only the 100 percent
target class resulted in substantial agreement (0.68) between
known/modeled blue tarp target locations (Landis and
Koch, 1977). Following Landis and Koch (1977) a fair level
of agreement was found for the 50 percent and 25 percent
target classes (0.40 and 0.38, respectively) while the mean
KIA for the 5 percent and 1 percent target classes (0.20 and
0.10, respectively) were considered slight and similar to
that expected from a chance (random) classification.

A pairwise Z-statistic was calculated to compare result-
ing error matrices between target classes (Table 3). These
results indicate the 100 percent target class performed
significantly better than all other target classes (z 	1.96).
This may be attributable to the fact that the 100 percent
target class had the potential to occupy full pixels homoge-
nously, while all other target classes represented sub-pixel,
heterogeneous classes. While the size of the blue tarps used
for the 100 percent target class were equal to that of a
QuickBird pixel, it is unlikely that each tarp was positioned
to perfectly fit the extent of a pixel as acquired by the
sensor. Consequently, it is more likely that individual
training sites contained 
100 percent cover by a blue tarp.
This same problem is encountered regularly in all field
studies and the results reported here are considered 

TABLE 2. RESULTING MEASURES OF ACCURACY AND STANDARD ERROR (SE)
FOR EACH BLUE TARP TARGET CLASS FOLLOWING SIX ITERATIONS OF MAXIMUM

LIKELIHOOD CLASSIFICATION

Target Class Accuracy User
(%) Producer’s (%) Overall

100 0.75 (SE � 0.05) 0.92 (SE � 0.03) 0.84 (SE � 0.02)
50 0.50 (SE � 0.08) 0.83 (SE � 0.08) 0.70 (SE � 0.05)
25 0.45 (SE � 0.03) 0.87 (SE � 0.05) 0.69 (SE � 0.02)
5 0.45 (SE � 0.11) 0.64 (SE � 0.09) 0.60 (SE � 0.04)
1 0.22 (SE � 0.08) 0.65 (SE � 0.15) 0.55 (SE � 0.07)

accuracy � 70 percent) and even further reduced for the
25 percent target class ( overall accuracy � 69
percent), the user’s accuracy exceeded 80 percent in all
cases (n � 6 classifications/target class). In contrast, the
5 percent and 1 percent target classes performed poorly
with mean overall accuracies of 60 percent and 55 per-
cent, respectively. In addition, both producer’s and user’s

x
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Figure 3. Mean KIA followed a strong negative trend
with target class size. The line of best fit resulted in a
coefficient of determination of 0.94

applicable and valid. Indeed, target detection thresholds
should be stated in terms of the size of the in situ target with
full understanding that many training sites will be subdi-
vided during image acquisition by the sensor.

The pairwise comparison between the 50 percent and
25 percent sub-pixel target classes showed no difference
(z � 0.20) indicating these classifications performed
similarly. The comparison between the 50 percent and
5 percent target classes had a z-score of 1.81 while the 
z-score comparing error matrices for the 25 percent and
5 percent target classes also showed no difference 
(z � 1.63). While the resulting classification accuracies
reported in this study demonstrate the reliable detection
of the 50 percent and even 25 percent target classes, the
results of pairwise comparisons indicate that none of these
classifications performed statistically different relative to
one another.

Nearly all pairwise comparisons with the 1 percent
target class were statistically significant (different) save for
the comparison with the 5 percent target class (z � 1.08). In
these cases, the overwhelming majority of each training site

pixel was occupied by non-target features and classification
results were similar to that expected by a chance (random)
classification. It is not surprising then, that pairwise compar-
isons with the 1 percent target class showed statistical
differences (z 	1.96) as effectively no trace of the blue tarp’s
spectra may have been present and classification results
followed a random distribution. The 5 percent target class
performed similar to the 1 percent target class for many of
the same reasons, resulting in pairwise comparisons that
showed no difference. These results serve to emphasize the
observation suggested by the results of separability testing;
targets covering 
25 percent of a pixel were unlikely to
achieve reliable classification results under the conditions of
this study.

Goodchild et al. (1994) suggested 75 percent overall
accuracy be used as a benchmark of classification reliabil-
ity and hence, detection. Under these guidelines, only the
100 percent target class achieved a reliable classification.
However, the 50 percent and 25 percent target classes
achieved a mean user’s accuracy of 	80 percent, albeit
with producer’s accuracies of only 50 percent and 45
percent, respectively ( KIA � 0.40 and 0.38, respectively).
These results suggest that while the 50 percent and 25
percent target classes were spectrally differentiable, other
classification methods (e.g., linear spectral unmixing or
classification and regression tree) may be required to
achieve accurate classification results with multispectral
sensors. A detailed study of the resulting error matrices
indicates there was confusion between target and non-
target classes. This may be reduced however, by including
simple band ratio layers (e.g., NDVI, MSAVI2), data
reduction layers (e.g., principal components analysis image
layers), or by excluding individual image bands where the
greatest spectral similarity existed (e.g., the green and red
bands in this study [Figure 2]).

This study was performed using QuickBird satellite
imagery (2.4 mpp) as this sensor’s spatial and spectral
characteristics best facilitated the need to accurately locate
rare and spectrally unique, sub-pixel targets. In semiarid
environments, this ability is critical because landscape
features such as sagebrush, shrubs, patches of invasive
weeds, and patches of bare soil are frequently encountered
at the same spatial order (i.e., 1 to 4 m). We believe these
results may be applicable to other multispectral sensors
regardless of the instrument’s spatial resolution with 25
percent cover suggested as the detection threshold of these
systems. However more research is required before such
statements can be unequivocally made. To substantially
improve the ability to detect small targets (i.e., 
0.25) the
use of hyperspectral imagery may be required (Parker-
Williams and Hunt, 2002; Glenn et al., 2005) and/or
techniques other than maximum likelihood to improve
sub-pixel detection.

Assessment of Error and Bias
All efforts were made to design and execute an experiment
that would rigorously and empirically test the detection
capabilities of multispectral imagery relative to rare and
spectrally unique targets in semiarid ecosystems. The results
reported here may vary somewhat if repeated in other
ecosystems, but the ability to significantly reduce sub-pixel
detection with multispectral sensors is not anticipated. In
many ways, the results observed in this study may represent
a best-case scenario as all targets were spectrally unique and
both physically homogeneous (i.e., laid flat upon the earth
with no neighboring shadow), and spectrally homogeneous
(i.e., standard deviation � 0.0001 for target spectra).

One potential error in this study relates to the exact
placement of each target relative to the location and “edge”

x

x

TABLE 3. PAIRWISE Z-STATISTIC RESULTS COMPARING VARIANCE OF
KAPPA FROM CUMULATIVE ERROR MATRICES OF EACH TARGET
CLASS. COMPARISONS WITH Z-SCORES 	1.96 REPRESENTED

SIGNIFICANTLY DIFFERENT CLASSIFICATION RESULTS

Target Class (%)

100 50 25 5 1

100 — 2.84 3.16 4.56 7.46

50 — 0.20 1.81 3.54

25 — 1.67 3.47

5 — 1.08
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of each pixel acquired by the QuickBird sensor. It is possi-
ble, and indeed likely, that some of the targets were cap-
tured across pixels instead of within a single pixel as was
assumed throughout the image analysis process. In these
cases, target size was effectively reduced and the training
site corrupted. For example, if a 50 percent blue tarp target
site was captured across two pixels, the training site (located
in the center of the target) might represent a 25 percent
target spectrally as only a portion of reflectance from that
tarp affected the training site pixel. This problem was most
likely to have occurred with the larger target classes (�50
percent) and was less probable with smaller target classes
(5 percent and 1 percent). This unavoidable error is not
attributable to the experimental nature of this study but is
common to all remote sensing studies and especially
problematic with any study focusing upon patchy and rare
target detection (e.g., the early detection of invasive weed
infestations).

The number of samples used in this study presents
another concern. To emulate the presence of rare targets,
100 blue tarps were prepared for this experiment, with 20
created for each target class. Of these 20, ten were randomly
selected to be used for training sites while the remaining ten
were used for independent validation in each trial, thus the
sample size for each classification trial was 10. However,
this bootstrap resampling technique was repeated six times
to better capture the variability within the training site
samples (Weber and Langille, 2007). While this remains a
potential bias of this study, it should be understood that the
spectral variance of the blue targets was very low( std. 
dev.� 0.0001; reflectance 0.07, 0.10, 0.06, and 0.26 for the
blue, green, red, and NIR bands respectively) and the major-
ity of variance was explained within the existing sample
size. In addition, if the sample size were insufficient for this
particular experiment, one would expect to see accuracy and
KIA values that varied greatly between trials. This was not
observed however, and indeed the standard error for all
measures of classification accuracy were small for target
classes 	25 percent (Table 2).

Conclusions
This study sought to experimentally determine the detec-
tion capabilities of multispectral imagery and was not
designed to develop and test new algorithms for sub-pixel
classification. For this reason, the authors used a common
classification technique (maximum likelihood) and only
basic (atmospherically corrected) image bands (i.e., blue,
green, red, and near infra-red). To address the objectives of
this study, six iterations of maximum-likelihood classifica-
tion were used to determine classification accuracy for 100
spectrally unique targets randomly placed over a semiarid
rangeland site. Error matrices were calculated using inde-
pendent validation sites and producer’s accuracy, user’s
accuracy, overall accuracy, KIA, and transformed divergence
were analyzed to compare the performance of each classifi-
cation and determine detection thresholds. The results of
this study suggest training site selection (both initial site
selection in the field and the selection of sites during
resampling operations in the laboratory) has significant
effect on classification accuracy. This effect became more
pronounced as target size decreased, as the standard
deviation of overall accuracy increased from 0.06 (100
percent target class) to 0.16 (1 percent target class).

This study demonstrated (a) the applicability of trans-
formed divergence separability scores as an indicator of
potential classification success, (b) an empirical relationship
(R2 � 0.94) between target size and classification accuracy,
and (c) the limitation of multispectral imagery for sub-pixel

x
x

target detection. Regarding the latter, it appears the detection
threshold of spectrally unique targets is approximately
25 percent cover within semiarid rangelands. This has direct
implication for invasive plant research and rare target
detection as targets such as leafy spurge or purple loosestrife
may be undetectable until an infestation covers 25 percent or
more of a pixel. If the results and relationships demonstrated
in this study transfer directly to other multispectral sensors
and furthermore, if Landsat imagery (30 � 30 m pixels) were
used, then weed infestations would need to be 225 m2 in
area before the infestation would be detectable. This is
problematic as land managers rely upon early detection for
effective control and eradication of weeds.

While the classification results reported in this study for
both the 50 percent and 25 percent target classes were not
ideal (overall accuracy was 
75 percent), the user’s accuracy
was satisfactory (	80 percent). To substantially improve the
ability to detect proportionally small targets (
0.25 pixel),
the use of hyperspectral imagery may be required and/or
techniques other than maximum likelihood (e.g., linear
spectral unmixing or classification and regression trees) to
improve sub-pixel detection.
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