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ABSTRACT 
Five remote sensing satellite sensors (Hyperion [30m x 30m spatial resolution], Landsat 5 TM [30m x 
30m spatial resolution], Satellite Pour l’Observation de la Terre (SPOT) 5 [10m x 10m spatial resolution], 
Quickbird [2.4m x 2.4m spatial resolution], and Worldview-2 [1.8m x 1.8m spatial resolution]) were used 
to determine if patches of dead-shrubs could be differentiated among a matrix of ground cover types 
(basalt, bare ground, grass, and live-sagebrush) using classification and regression tree analysis. Results 
for all image classifications were unsuccessful (overall accuracy < 75%) suggesting it may not be possible 
to detect dead-shrubs with the satellite-based sensors tested. However, pair-wise Analysis of Variance 
(ANOVA) results for in situ spectra collected with a handheld Analytical Spectral Devices, Inc (ASD) 
FieldSpec Pro field spectroradiometer, showed significant differences between dead-shrubs and all other 
ground cover types (P < 0.001). To aid in the characterization of vegetation at the study site and better 
understand the spectral signatures of landscape features, shrub height, age, and percent water content 
were also compared with ANOVA results indicating a difference in percent water content between live 
and dead-shrubs (P < 0.001). 
 
KEYWORDS: Shrub die-off, shrub mortality, sampling, GIS, remote sensing, sagebrush, image 
classification 
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INTRODUCTION 
Sage-grouse (Centrocercus urophasianus) are a sagebrush-obligate species requiring large, contiguous 
expanses of habitat (Connelly et al., 2004; Aldridge et al., 2008; Knick and Connelly, 2011). Some form 
(particularly big sagebrush (Artemisia tridentata) and silver sagebrush (Artemisia cana)) and quantity 
(~15-30% canopy cover) of sagebrush within the landscape are necessary to meet seasonal food, cover, 
and nesting requirements of sage-grouse (Patterson 1952, Connelly et al., 2000, Connelly et al. 2011, 
Knick and Connelly, 2011).  While the quantity, or area, of available habitat is important so is habitat 
quality. The National Land Cover Database (NLCD) maps typically designate sagebrush dominated areas 
as shrub/scrub (Figure 1) and while the entirety of the NLCD land cover classification cannot be treated 
as viable sage-grouse habitat, the sage-grouse conservation area (SGCA) falls within a majority these 
areas (Connelly et al. 2004) (Figure 2; black boundary). Similarly, sage-grouse distribution closely 
mirrors sagebrush distribution (Figure 3) and for this reason, land managers may treat most shrub/scrub 
areas as viable sage-grouse habitat.  
 

 
Figure 1. Land cover based upon the National Land Cover Database (NLCD) identifying areas of shrub/scrub 
land cover type, which land managers often delineate as sage-grouse habitat. 
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Figure 2. Sage-grouse conservation assessment boundary (SGCA) based on pre-settlement distribution of 
sage-grouse (source: Connelly et al. 2004).  
 

 
Figure 3.  Estimated distribution of sagebrush density within the SGCA (source: Connelly et al. 2004). 

 
Patches of shrub mortality can occur within otherwise healthy stands of sagebrush leading to an 
overestimation of total sage-grouse habitat. Sagebrush (shrub) mortality in semiarid rangelands was a 
widespread phenomenon in the salt-desert region of Utah between 1983 and 1988 due to persistent wet 
conditions (Wallace et al., 1989). In Wyoming, Colorado, and Utah snow-mold fungus was also indicated 
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as a possible cause of shrub mortality (Hess et al. 1985). Though this phenomenon is known to occur 
throughout the semiarid sagebrush-steppe for a variety of reasons including drought, wetter than normal 
seasons, snow-mold fungus, and insects (Hess et al. 1985, Harper et al. 1989, Haws et al. 1989, Walser et 
al. 1989, Wiens et al. 1991, Tilley et al. USDA NRCS, Takahashi and Huntly 2010, Hampton and Huntly 
2010), published reports pertaining to this phenomenon in southeast Idaho focus primarily on shrub 
mortality caused by leaf defoliating insects such as the Aroga moth (Aroga websteri). Sagebrush is the 
exclusive larval host of the Aroga moth and, in high numbers larva can kill host plants and reduce the 
production of foliage and flowering by surviving plants (Hampton and Huntly, 2010). Takahashi and 
Huntly (2010) reported increases in inflorescence growth (22%), flower production (325%), and seed 
production (1053%) after an experimental removal of insect herbivores from big sagebrush (Artemesia 
tridentata) plants with insecticide. Regardless of the cause, shrub mortality affects sage-grouse habitat as 
it impacts the primary source of food and shelter. 
 
The ability to differentiate dead-shrubs from proximal targets with remote sensing imagery would allow 
land managers to better assess the quality of sage-grouse habitat across their distribution. Remote sensing 
systems onboard satellites provide high quality yet relatively inexpensive data, and are useful for 
monitoring a variety of landscape characteristics (Weber et al. 2008, Weber et al. 2009, Wheeler and 
Glenn 2003, McMahan et al. 2003, Sankey et al. 2008). A limitation of satellite-based sensors that can 
impact their ability to accurately record target radiance is the signal to noise ratio (SNR) of the sensor. 
 
Atmospheric scattering and the signal to noise ratio (SNR) of a sensor can affect the accuracy of recorded 
radiance of a target at the sensor. Scattering occurs when reflected light strikes other particles in the 
atmosphere before reaching the satellite sensor. The type of scattering (Rayleigh, Mie, or Nonselective) is 
dependent upon the size of particles in the atmosphere, their abundance, the wavelength of the reflected 
light, and the depth of the atmosphere through which the energy is traveling (Campbell, 2008). Rayleigh 
scattering is attributed to atmospheric gas molecules and causes visible effects such as a blue sky. Mie 
scattering occurs when particles have diameters that are roughly equivalent to the wavelength of the 
scattered radiation, and is experienced primarily in the lower atmosphere through larger particles such as 
dust or pollen. Nonselective scattering accounts for what we observe as a whitish haze in the atmosphere, 
and refers to scattering that occurs from particles larger than the wavelength of the scattered light 
(Campbell, 2008). The SNR of a particular sensor can also influence the ability to accurately record 
reflected energy of a target. The signal refers to differences in image brightness caused by actual 
variations in scene brightness whereas noise refers to variations unrelated to scene brightness, and more 
with the inherent abilities of the sensor itself. If the magnitude of noise is large relative to the signal, the 
resulting image will not provide a reliable representation of the target of interest (Campbell, 2008). 
Because of these effects, compiling a spectral library characterizing in situ target spectra can be useful 
during classification of remotely sensed imagery.  
 
Glenn et al. (2005) successfully detected leafy spurge occurrence in Swan Valley, Idaho using HyMap 
hyperspectral data collected by the HyVista. In situ spectra of leafy spurge and other proximal vegetation 
were collected using an Analytical Spectral Devices, Inc (ASD) FieldSpec Pro field spectroradiometer 
concurrent with image acquisition to characterize in situ target reflectance patterns at various wavelengths 
across the electromagnetic (EM) spectrum. Spectral profiles were combined with known geographic 
locations of leafy spurge to derive endmembers within images for two data collection years. 
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Characterization of in situ target spectra enabled visual analysis of minor variations in reflectance and 
absorption patterns of leafy spurge across the EM spectrum, while also serving to help the authors 
determine if a spectral subset of image data would be necessary for successful classification.  
 
Williams and Hunt (2004) had success detecting leafy spurge occurrence in northeast Wyoming, near 
Devils Tower National Monument using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and 
spectral mixture analysis. In situ spectra of leafy spurge were collected with an ASD Fieldspec UV/VNIR 
Spectroradiometer, and were used to verify identification of spectral endmembers of leafy spurge. These 
positive results further illustrate how characterizing target spectra through field collection of in situ 
spectra can help achieve positive results during image classification. 
 
Published reports pertaining to remote detection of shrub mortality is limited. Chopping et al. (2008) 
describe a new method for retrieving fractional cover of large woody shrubs at the landscape scale using 
Earth Observation System (EOS) Multiangle Imaging SpectroRadiometer (MISR) derived imagery and a 
hybrid geometric-optical canopy reflectance model. Stow et al. 2007 used very high spatial resolution 
(1m) multispectral imagery collected with an Airborne Data Acquisition and Registration (ADAR) system 
with visible near infrared (V/NIR) datasets to generate shrub cover change maps for Mission Trail 
Regional Park in San Diego, CA.  Overall accuracy and kappa statistics for classification were 83% and 
0.64 respectively.  
 
The reflectance of an object over various wavelengths of the EM spectrum is commonly referred to as a 
spectral signature (Chuvieco and Huete 2010). Spectral signatures are initially recorded as radiance by the 
sensor that has been reflected by targets from a terrain. They are then converted to reflectance values to 
ease interpretation and to enable cross-comparison of remote sensing image data of an area from different 
dates. To reliably detect a feature using remote sensing, that feature must exhibit a unique spectral 
signature. It was hypothesized that a difference in plant water content between dead-shrubs and live-
sagebrush might be a key factor for successful classification of dead-shrub. There is a strong relationship 
between the reflectance in the shortwave infrared (SWIR) (1550 – 1750 nm and 2080 – 2350 nm) and the 
amount of water present in the leaves of a plant canopy (Jensen, 2007). Water in plants absorb incident 
energy in this region with increasing strength at longer wavelengths.  
 
To detect, and thereby characterize the extent of shrub mortality within sage-grouse habitat areas of 
southeast Idaho, remote sensing technologies were applied. This paper describes the field sampling 
performed during the summer of 2010 as well as laboratory analysis of image data from five remote 
sensing satellite-based sensors, to determine if patches of dead-shrubs could be detected among the matrix 
of ground cover types at the O’Neal Ecological Reserve, Idaho. This study used random, adaptive, and 
directed sampling techniques to collect various sagebrush plant characteristics including field and 
laboratory measured weights of twig samples from dead-shrubs and live-sagebrush to calculate percent 
water content, along with a plot level determination of homogeneity. These data were used to classify 
imagery for presence/absence of dead-shrubs. Vegetation data were collected to determine if there was a 
statistical difference in percent water content between dead-shrubs and live-sagebrush, and likewise, if a 
difference in percent water content would translate to spectral differentiation in the SWIR region of the 
EM spectrum.  
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METHODS 
Study area 
The O’Neal Ecological Reserve (Figure 4) is located along the Portneuf River, approximately 30 km 
southeast of Pocatello, Idaho (42° 42' 25"N, 112° 13' 0" W). The O’Neal receives <0.38 m of 
precipitation annually with nearly 50 percent falling as snow in the winter months (October 1- March 31). 
An average of 0.15 m (SE = 55.4) of rainfall occurs during the growing season (April 1 – September 31). 
The topography is relatively flat with a mean elevation of approximately 1426 m (1400-1440 m). The site 
is characterized by shallow, well drained soils over basalt flows originally formed from weathered basalt, 
loess, and silty alluvium that remain homogenous throughout the site (USDA NRCS 1987, Weber and 
Gokhale 2010). Dominant plant species include big sagebrush (Artemesia tridentata) with various native 
and non-native grasses, including Indian rice grass (Oryzopsis hymenoides) and needle-and-thread 
(Hesperostipa comata) (Davis and Weber, 2010). The O’Neal is managed by Idaho State University 
(ISU) while land immediately surrounding it is managed by the USDI BLM. This area has a history of 
rest-rotation cattle grazing (> 20 years) at low stocking rates (300 AU/ 1467 ha [6 AUD ha-1]). The last 
fire to occur within the O’Neal was in 1992. 

 
Figure 4. Study area: The O’Neal Ecological Reserve, represented by the polygon, is located near 
McCammon, Idaho, 30km south of Pocatello. This was the study area was chosen as part of a research 
project attempting to remotely detect dead-shrub patches using five satellite-based sensors (Hyperion, 
Landsat 5 TM, SPOT-5, Quickbird, and Worldview-2) 
 
Field data collection 
Two sampling sessions were completed during the summer of 2010. The first session (14 June 2010 – 25 
June 2010) consisted of 60 randomly located sample points followed with adaptive sampling applied to 
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stands determined to be homogeneous (> 50%) for dead-shrub based on protocols described at 
http://giscenter.isu.edu/research/Techpg/nasa_postfire/results.htm.  
 
Sample points were navigated to using a Trimble GeoXH GPS receiver (< 1.0 m @ 95% CI following 
post-process differential correction) with each point referred to as plot center. An insufficient number of 
dead-shrub sites were found during the initial sampling session (n = 13) and as a result, a directed 
sampling approach was used in the second sampling session (29 June 2010 – 14 July 2010). The directed 
sampling approach is one where field personnel use their knowledge of the study area to locate additional 
sample sites. While this approach introduced a bias into the sample dataset it was effective for locating 
uncommon targets such as homogeneous stands of dead-shrubs. When a new site was located, the same 
sampling protocol as described above was followed. The goal of the field collection campaign was to 
collect a minimum of 60 live-sagebrush and 60 dead-shrub sites.  
 
Sagebrush and dead-shrub twig samples were collected from up to four plants at each site and weighed 
using a Pesola scale (+/- 1 g). Selected twigs were approximately 5 mm in diameter and approximately 
250 mm in length. A total of 30 live-sagebrush twig samples were collected as well as 30 dead-shrub twig 
samples. These samples were placed in a bag, labeled with a unique ID consisting of the sample point ID, 
date, and sequence (1-4) and returned to the laboratory for drying and determination of percent water 
content (Davis et al. 2011).  
 
Field spectra were collected from five in situ target types (basalt, bare ground, grass, dead-shrub, and live-
sagebrush) during summer, 2010 (n = 2,565). Data were collected using the ASD FieldSpec Pro and 
imported into Microsoft Excel for further processing. Spectra were sorted by target and wavelength.  
 
Image acquisition and processing 
Imagery for the O'Neal study area was collected during the summers of 2009-2010 to capture peak 
greenness of sagebrush in southeast Idaho. This was determined by viewing time-lapse video of 
sagebrush at the O’Neal from 12 March 2010 through 10 October 2010 (URL here for that file) (Table 1).  
 
Table 1. Remote sensing satellite imagery collected for the O’Neal Ecological Reserve, Idaho May - July, as 
part of a research project to remotely detect dead-shrub patches using five satellite-based sensors (Hyperion, 
Landsat 5 TM, SPOT-5, Quickbird, and Worldview-2). 
Sensor  Collection Date Spatial Resolution  Spectral Resolution   
Hyperion 16 June 2010  30m x 30m  220 bands: 400 nm to 2500 nm 
Landsat 5 TM 07 May 2010  30m x 30m  7 bands: Blue, Green, Red, NIR, SWIR 

1. SWIR 2 
SPOT 5  20 June 2010  10m x 10m  4 bands: Green, Red, NIR, SWIR 
Quickbird 06 June 2009  2.4m x 2.4m  4 bands: Blue, Green, Red, NIR 
Worldview-2 16 May 2010  1.8m x 1.8m  8 bands: Blue, Green, Red, NIR1, NIR2 
              Coastal Blue, Yellow, Red Edge 
 
All satellite imagery (excluding Hyperion) were atmospherically corrected using Idrisi Taiga (ver. 16.04) 
image processing software. Images (excluding Landsat) were co-registered for improved horizontal 
positional accuracy. Landsat data were delivered registered to a high degree of accuracy, however to 
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confirm registration accuracy, data were compared against 2004 National Agricultural Imagery Program 
(NAIP) imagery (1m x 1m spatial resolution) (horizontal positional accuracy within +/- 5m). WV-2 and 
Quickbird imagery were co-registered to known ground control points of high positional accuracy (Weber 
et al., 2010ᵇ). Due to coarse pixel resolution, it was not possible to co-register Hyperion, Landsat, and 
SPOT imagery to the same ground control points used for WV-2 and Quickbird, therefore images were 
co-registered to the 2004 NAIP imagery. Root mean square error (RMSE) was <50% (Table 2) of the 
pixel resolution for all co-registered imagery, which is suggested as the minimum necessary for reliable 
classification (Weber, 2006). 
 
Table 2. Co-registration results for remote sensing satellite imagery collected over the O’Neal Ecological 
Reserve, Idaho 

Sensor  Spatial Resolution (mpp) RMSE  % pixel size    
Hyperion  30.0   2.76m   9 
Landsat   30.0   2.97m   10 
SPOT   10.0   1.68m   17 
Quickbird  2.4   0.07m   3 
WV-2   1.8   0.10m   6 

 
Spectral signatures were extracted for all images in Idrisi (Image Processing→Signature 
Development→SEPSIG) and spectral differentiability was tested using the Transformed Divergence 
Index. Transformed divergence is a commonly used measure of differentiability that calculates the 
statistical “distance” between classification categories. The calculated differentiability value provides a 
measure of potential classification accuracy. With a multiplier constant of 2,000, a calculated value of 
1,500 is the suggested threshold for significant differentiability (Richards 1993, Lillesand and Kiefer 
2000).  
 
Supervised classification of imagery was performed in Idrisi to differentiate dead-shrub classes from live 
shrub classes using 119 field sample points acquired during the summer field sampling sessions. Sample 
points were separated into two classes where an attribute of 1 indicated dead-shrub and 2 indicated 
"other" (e.g., live-shrub, grasses, bare ground, or basalt). Using Hawth’s Tools (Beyer, 2004) in ArcMap 
9.3.1, these sample points were randomly selected and divided into training and validation sites to allow 
for independent validation. Using Idrisi a presence/absence model for dead-shrubs was created using 
classification and regression tree analysis (CTA) (Image Processing→Hard Classifiers→CTA). 
Classification and regression tree analysis is a non-probabilistic, non-parametric statistical technique that 
is adept at modeling data that is non-normally distributed (Breiman et al. 1998; Friedl and Brodley 1997; 
Lawrence and Wright 2001; Miller and Franklin 2001). It is hypothesized that dead-shrub patches are 
non-normally distributed and for this reason, may be modeled more accurately with CTA relative to other 
supervised classification techniques such as maximum likelihood, which may be more appropriate when a 
dataset is known to follow a certain distribution pattern (Clark Labs, 2008). The CTA algorithms select 
useful spectral and ancillary data which optimally reduce divergence in a response variable (Lawrence 
and Wright 2001). CTA uses machine-learning to perform binary recursive splitting operations and 
ultimately yields a classification tree diagram that is used to produce a model of the response variable. 
Splitting algorithms common to CTA include entropy, gain ratio, and Gini. The entropy algorithm has a 
tendency to over-split, creating an unnecessarily complex tree (Zambon et al., 2006). The gain ratio 



Final Report: Assessing Post-Fire Recovery of Sagebrush-Steppe Rangelands in Southeastern Idaho 
 

219 
 

algorithm addresses the over-splitting problem through normalization while the Gini algorithm partitions 
the most homogeneous clusters first using a measure of impurity while isolating the largest homogeneous 
category from the remainder of the data (McKay and Campbell 1982; Zambon et al., 2006). As a result, 
classification trees developed using the Gini splitting algorithm are less complex and therefore more 
easily understood by the analyst. For these reasons, the Gini splitting algorithm was selected for use in 
this study. 
 
A key advantage of CTA is its ability to use both spectral and non-spectral data selectively during the 
splitting and classification process. This allows for the use of topographic data which may be equally 
important in modeling dead-shrub. Such ancillary data can be used with other supervised classification 
techniques (Lillesand et al., 2008) but classifiers like maximum likelihood use all input data to arrive at a 
final classification. This is in contrast to the advantage of CTA noted above, which selectively applies 
input data in its classification process. 
 
All atmospherically corrected multispectral imagery bands and an NDVI layer were used for the 
classification. For Hyperion, 61 image bands were selected from 220 as part of a standard data reduction 
technique along with three derivative slope bands for image classification. These bands were selected to 
correspond with wavelengths determined through visual analysis of graphed in situ spectra as optimal for 
detection of dead-shrub patches based on mean reflectance peaks of dead-shrub spectra and areas of non-
overlapping variability for target spectra. 
 
Normalized Difference Vegetation Index (NDVI) is an index of photo-synthetically active vegetation and 
is calculated using the red and near infrared (NIR) bands of multispectral imagery. The resulting NDVI 
has an interval of -1 to +1, where -1 is no vegetation and +1 is pure photo-synthetically active vegetation 
(Rouse et al., 1973, Tucker 1979). High reflectance of vegetation in the NIR wavelengths due to spongy 
mesophyll within leaf structure makes NDVI a very useful landscape productivity parameter in its ability 
to highlight areas of photo-synthetically active vegetation. Though there has been some evidence that 
NDVI is less successful a predictor variable in study areas where bare-soil exceeds 20% (Sankey et al. 
2009), it is still widely accepted to be useful as a predictor variable for vegetation and is used in rangeland 
studies (Weber et al. 2009, Gokhale and Weber. 2009, Blanco et al. 2007, Aldridge and Boyce 2007, Zou 
et al. 2006). NDVI was included in this study for all multispectral imagery, as an additional separation 
measure of dead-shrub and was calculated in Idrisi Taiga image processing software following equation 
2. The inclusion of this measure helped to isolate actively photosynthesizing vegetation from senesced 
vegetation. 

 
NDVI = 𝑁𝐼𝑅 𝐵𝑎𝑛𝑑−𝑅𝑒𝑑 𝐵𝑎𝑛𝑑

𝑁𝐼𝑅 𝐵𝑎𝑛𝑑+𝑅𝑒𝑑 𝐵𝑎𝑛𝑑
 (Eq. 2) 

 
Laboratory and statistical analysis 
Twig samples were dried in ovens at 80° Celsius for 48 hours. Once dried, samples were re-weighed 
using the same Pesola scale used to weigh them in the field. Field weights were defined as “wet weight” 
and post-drying laboratory weights as “dry weights.” Wet and dry weights were recorded in MS Excel. 
Percent water content was calculated following equation 3.  A single factor ANOVA test was used to 
determine if there was a difference in percent water content between live-sagebrush and dead-shrubs.  
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Percent Water Content = 1 – (dry weight/wet weight) (Eq. 3) 
 

Descriptive statistics for in situ spectra were calculated, and mean reflectance values for each target type 
were graphed creating a spectral profile of each target type. Variability of reflectance (@ 95% CI) within 
each target spectra was calculated by multiplying the standard error by 1.96 (or the z-score for a 95% 
confidence interval). These values were then applied to the calculated mean of each target at each 
wavelength and graphed. Targets were considered differentiable when separated by > 1.96 standard error. 
Pair-wise single factor ANOVA tests were performed (basalt, bare ground, grass, and live-sagebrush) to 
determine if dead-shrubs could be differentiated from the matrix of other rangeland features. 
 
Derivative spectroscopy, or derivative analysis, is a tool commonly used in the analysis of hyperspectral 
remote sensing data. Derivative techniques enhance minute fluctuations in spectral reflectance and may 
help separate closely related absorption features (Louchard et al., 2002). Spectral derivative techniques 
have been applied in remote sensing and found to eliminate background signals and differentiate 
overlapping signatures. When applied to remote sensing, derivative analysis is a measure of the slope of 
the line of a portion of the spectral profile where the slope of the line appears to differ among target types. 
For the purpose of this research this technique was used as an additional separation measure for 
classification of dead-shrub using Hyperion hyperspectral imagery. 
 
Spectral profiles were analyzed visually to locate points where the slope of the line appeared to differ 
from the slopes created by the other targets within the same waveband region. Derivative slopes were 
calculated in Idrisi using the Hyperion imagery for three spectral regions using the following equation 
(Tsai and Philpot 1998): 

Slope = 𝑠
(𝜆𝑖)−𝑠(𝜆𝑗)

△𝜆
 (Eq. 3) 

Where 𝑠(𝜆𝑖) is the reflectance at wavelength i, 𝑠(𝜆𝑗) is the spectral reflectance at wavelength j, and △ 𝜆 
refers to difference between wavelengths i and j. 
 
Classification accuracy assessment 
Resulting classification layers were independently validated in Idrisi (Image Processing →Accuracy 
Assessment→ERRMAT) using a standard error matrix and Kappa statistic, where predicted (modeled) 
target type (e.g., dead-shrub) locations were compared against known (field) target type (e.g., dead-shrub) 
locations (Table 3). The Kappa index of agreement served as an indicator of how well the classification 
performed relative to a random classification. Classifications with ≥ 75% overall accuracy were 
considered reliable (Goodchild et al., 1994, Weber 2006). However, classifications with overall accuracy 
of ~ 70% were still considered positive results. Paired error matrix tests of significance (Congalton and 
Green, 2008) were used to determine if any of the image classifications performed statistically better than 
any other, where the null hypothesis (0) indicates no difference between classifications. 
 
RESULTS AND DISCUSSION 
Field data 
Of the sample points collected 97.7% were post-process differentially corrected to < 1m, while 0.002% 
were corrected at an accuracy > 1m. Sub-meter accuracy of field locations resulted in a high degree of 
horizontal positional accuracy which ensured that field locations were reliably located in the correct pixel 
during image classification. For high spatial resolution remote sensing imagery such as Quickbird (2.4m 
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spatial resolution) or Worldview-2 (1.8m spatial resolution) a high degree of horizontal positional 
accuracy (RMSE < 50%), because if the target being classified comprises one pixel of that imagery, a 
slight shift in the actual location relative to the measured field sites can result in lower overall accuracy 
(Weber 2006, Weber et al. 2007).  
 
Image processing 
Transformed divergence values for each of the spectral signatures developed for this study were well 
below the threshold (1500; Table 4) indicating low potential for differentiation of dead-shrub from the 
matrix of other targets during image classification. 
 
Table 4. Transformed divergence values for five remote sensing satellite images (Hyperion, Landsat 5 TM, 
SPOT 5, Quickbird, and Worldview-2) testing spectral separability of dead-shrub patches using the SEPSIG 
tool in Idrisi Taiga image processing software as part of a research project attempting to remotely detect 
dead-shrub patches at the O’Neal Ecological Reserve, Idaho. 
      Sensors 
Transformed  Hyperion Landsat SPOT  Quickbird WV-2 
Divergence      Values    840.82  563.77  826.64     952.57 605.96 
 
Laboratory and statistical analysis 
The mean percent water content of live-sagebrush plants was 64.6% (SE = 0.01; n = 30) and 15.6% for 
dead-shrubs (SE = 0.03; n = 30) and ANOVA results indicated a significant difference (P < 0.001) (Davis 
et al., 2010). These results suggest there is a difference in water content between dead-shrub and live-
sagebrush, which means that dead-shrub patches should exhibit greater reflectance values in the SWIR 
region of the EM spectrum relative to live-sagebrush which would experience greater absorption at these 
wavelengths. These results support the hypothesis that a spectral band sensitive to the SWIR region may 
be important for successful classification of dead-shrubs.  
 
Pair-wise single factor ANOVA tests for differentiability between ASD field spectra of dead-shrub and 
the other in situ targets (basalt, bare ground, grass, and live-sagebrush) revealed a statistical difference 
between all paired samples (P < 0.001). Calculated variability of spectra within each target class was 
narrow (spectral separation > 1.96 SE) further supporting evidence for differentiability among target 
spectra (Hanson et al., 2010). This indicates that dead-shrub patches have a unique spectral signature (the 
unique combination of reflected and absorbed EM radiation at varying wavelengths that uniquely 
identifies a target) relative to the other target types used in this study (basalt, bare ground, grass, and live-
sagebrush), and therefore may be detectable via a remote sensing platform. 
 
Three points of slope deviation were found among the mean in situ target spectra. These line-segments 
were found between 700 nm and 730 nm, 1115 nm and 1140 nm, and 1290 nm and 1330 nm (Figure 5). 
The resulting slopes were selected as they are considered fundamentally diagnostic (Becker et al. 2005). 
Slopes of these line-segments were calculated using Hyperion bands 38 and 35, 97 and 99, and 115 and 
118 respectively following equation 3. 
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Figure 5. Points of slope deviation among mean In situ target spectra (basalt, bare ground, grass, dead-shrub, 
and live-sagebrush) collected at the O’Neal Ecological Reserve, Idaho. 
 
The spectral profiles were superimposed with representations of the image bands for each sensor included 
in this study to gain insight as to which bands might be useful for classification (Figures 6 through 9). 
Visual analysis of these data revealed the reflectance peaks for dead-shrub spectra were consistently 
different from other target spectra between 700 nm and 2500 nm. Image bands for Hyperion were not 
superimposed with the spectral profiles because the excessive number of available bands (220) and 
narrow band widths characteristic of hyperspectral data resulting in near continuous spectral coverage. 
The bands that appeared to show the greatest difference between dead-shrub spectra and other targets for 
each of the sensors were: NIR, SWIR-1, and SWIR-2 for Landsat 5 TM (Figure 6); NIR and SWIR for 
SPOT 5 (Figure 7); NIR for Quickbird (Figure 8); and red edge (RE), NIR-1 and NIR-2 for WV-2 (Figure 
9).  
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Figure 6. Landsat 5 TM image bands superimposed with plotted mean reflectance of in situ target spectra 
collected at the O’Neal Ecological Reserve, Idaho as part of a research project attempting to remotely detect 
dead-shrub patches using five satellite-based sensors (Hyperion, Landsat 5 TM, SPOT-5, Quickbird, and 
Worldview-2) This graph was used as a pre-analysis tool to get an idea of which bands might be useful during 
image classification for the successful identification of dead-shrub patches. 
 

 
Figure 7. Spot 5 image bands superimposed with plotted mean reflectance of in situ target spectra collected at 
the O’Neal Ecological Reserve, Idaho as part of a research project attempting to remotely detect dead-shrub 
patches using five satellite-based sensors (Hyperion, Landsat 5 TM, SPOT-5, Quickbird, and Worldview-2) 
This graph was used as a pre-analysis tool to get an idea of which bands might be useful during image 
classification for the successful identification of dead-shrub patches. 
 

 Blu Grn   Red        NIR                                                SWIR-1       SWIR-2 

          GrnRed        NIR                                        SWIR 



Final Report: Assessing Post-Fire Recovery of Sagebrush-Steppe Rangelands in Southeastern Idaho 
 

224 
 

 
Figure 8. Quickbird image bands superimposed with plotted mean reflectance of in situ target spectra 
collected at the O’Neal Ecological Reserve, Idaho as part of a research project attempting to remotely detect 
dead-shrub patches using five satellite-based sensors (Hyperion, Landsat 5 TM, SPOT-5, Quickbird, and 
Worldview-2) This graph was used as a pre-analysis tool to get an idea of which bands might be useful during 
image classification for the successful identification of dead-shrub patches. 
 

 
Figure 9. Worldview-2 image bands superimposed with plotted mean reflectance of in situ target spectra 
collected at the O’Neal Ecological Reserve, Idaho as part of a research project attempting to remotely detect 
dead-shrub patches using five satellite-based sensors (Hyperion, Landsat 5 TM, SPOT-5, Quickbird, and 
Worldview-2) This graph was used as a pre-analysis tool to get an idea of which bands might be useful during 
image classification for the successful identification of dead-shrub patches. 
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Classification accuracy assessments 
Image classification of dead-shrub was unsuccessful regardless of the sensor used for classification 
(overall accuracy < 75%) (Table 5). This is consistent with results achieved with the transformed 
divergence measure of separability test. Overall Kappa statistics were also low, indicating classifications 
were only slightly better than random. Paired error matrix tests of significance suggest no image 
classification performed better than any other (Z < 1.96). As a result, we conclude that detection of dead-
shrubs is not possible with the sensors used in this study. 
 
Table 5. Classification accuracy assessment for the classification of five remote sensing satellite images 
(Hyperion, Landsat 5 TM, SPOT 5, Quickbird, and Worldview-2) of dead-shrub patches at the O’Neal 
Ecological Reserve, Idaho. This was part of a research project testing the abilities of satellite-based sensors to 
detect sage-grouse habitat quality. 
    Hyperion Lands 5 TM SPOT 5 Quickbird WV-2 
Users Accuracy     55 %        65 %   67 %       58 %   62 % 
Producers Accuracy     60 %        65 %   60 %       64 %   66 % 
Overall Accuracy     54 %        66 %   65 %       59 %   61 % 
Kappa       10 %        32 %   29 %       18 %   23 % 
 
Assesement of error and bias 
There are several possible factors that could have contributed to the negative results for this study. 
Worldview-2 is the finest spatially resolved multispectral remote sensing satellite currently available. 
Despite its spatial resolution, this imagery may not be sufficiently spatially resolved for the type of 
classification attempted. Though an effort was made to record stands that represented homogenous pixels 
of either live-sagebrush or dead-shrubs, there likely was some pixel mixing of target spectra with adjacent 
or underlying targets such as exposed soil or grass which may overpower or alter the resulting dead-shrub 
spectra recorded at the sensor. Sagebrush is a woody shrub species and its associated spectral signature, 
like most vegetation in semiarid regions, lacks significant spectral contrast compared to features with 
strong reflectance like soil (Okin et al., 2001). Soil albedo often produces a much higher reflectance than 
other targets and, lacking leaves, dead-shrubs may allow underlying soil to be exposed to the sensor.  
 
SNR of a sensor can further impact recorded radiance of a target at the sensor as it refers to the inherent 
abilities of the sensor to accurately record data. An SNR of approximately 100:1, as with the Hyperion 
imagery (Boardman, 2002) used in this study, is low, which could help explain the negative classification 
results observed for this sensor. 
 
Laboratory results suggest a statistical difference in plant percent water content between dead and live 
shrubs (P < 0.001). However image classifications of dead-shrub were negative for all sensors tested. 
These results do not support the hypothesis that a SWIR band would enable differentiation of dead-shrub 
patches however these results are more likely the result of the relatively coarse spatial resolution of the 
sensors containing SWIR image bands (Landsat, SPOT, and Hyperion). Additionally, the spectral profile 
produced by bare ground demonstrated nearly identical absorption and reflectance patterns as dead shrub, 
though with higher reflectance. It is possible that negative classification results were due to the inability 
of the sensor to differentiate dead shrub reflectance from the very similar yet overpowering bare ground 
reflectance.  Future research might reexamine this hypothesis using different sensors with finer spatial 
resolution, as results of pair-wise ANOVA tests between in situ spectra of dead-shrub and proximal 
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targets (basalt, bare ground, grass, and live-sagebrush) indicate that differentiation was possible (P < 
0.001 for all sampled pairs), however while in situ proved that dead shrub-spectra had higher reflectance 
in the SWIR region than live-sagebrush, dead-shrub spectra was consistently lower than most other target 
types, including bare ground. 
 
Spectral resolution of each sensor is yet another consideration. Imagery with higher spectral resolution 
can enable discrimination of subtle differences in spectral signatures (Aspinall et al., 2002), and provide 
increased species discrimination (Glenn et al., 2005). In this study, the image classification of dead-shrubs 
with the Hyperion hyperspectral sensor was unsuccessful despite a high spectral resolution (220 spectral 
bands). Although spatial resolution for Hyperion is coarse (30m x 30m) and SNR is poor (< 100:1) 
(Boardman, J., 2011) which could affect the sensor’s ability to accurately record target radiance even with 
improved spectral resolution.  
 
CONCLUSIONS 
This project attempted to differentiate shrub mortality by classifying imagery from five satellite-based 
sensors (Hyperion, Landsat 5 TM, SPOT, Quickbird, and Worldview-2). Classification results were 
unsuccessful, with users’ accuracies ranging from 55% to 67%, producers’ accuracies ranging from 60% 
to 66%, and overall accuracies ranging from 54% to 66%. Paired error matrix tests of significance 
determined that no image classification performed better than any other (Z < 1.96). These negative results 
were likely due to a combination of factors including coarse spatial resolution, pixel mixing, low spectral 
resolution, or poor SNR of the sensor. Future research should revisit this study with sensors other than the 
five tested here.  
 
Analysis of in situ spectra, collected concurrent with the field season described in this study, confirmed 
differentiability of dead-shrub spectra (P < 0.001) from the matrix of other targets (basalt, bare ground, 
grass, and live-sagebrush), though spectral profiles produced by dead-shrub and bare ground 
demonstrated nearly identical reflectance and absorption patterns, and dead-shrub spectra had consistently 
lower reflectance than bare ground. In addition a difference was found in plant percent water content 
between dead and live shrubs (P < 0.001) suggesting that differentiation might be possible with sensors 
possessing SWIR band(s). Dead-shrub classifications with the imagery used in this study containing 
SWIR bands (Landsat, SPOT, and Hyperion) were unsuccessful and this may be due to the relatively 
coarse spatial resolution and resulting pixel mixing among other contributing factors. Additionally, while 
analysis of in situ spectra proved that dead-shrub spectra had higher reflectance in the SWIR region than 
live-sagebrush, dead-shrub spectra were consistently lower than most other target types, including bare 
ground.   
 
It is hypothesized that successful classification may be possible with sensors possessing very high spatial, 
spectral, and radiometric resolutions. These stipulations will reduce pixel mixing, increase sensitivity of 
the sensor to a wider range of wavelengths across the EM spectrum, and increase the ability of the sensor 
to discriminate between differences in signal strengths as it records radiant flux. Currently, the required 
spatial resolution is only available using aerial photography. However, unlike satellite sensors where the 
entire image footprint is effectively acquired from a near nadir (directly underneath the sensor) 
perspective, with airborne sensors an increasing off-nadir angle exists for pixels at or near the edge of the 
imagery. Technology is constantly and rapidly evolving however, and if a satellite-based sensor is 
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developed incorporating very high spatial, spectral, and radiometric resolutions, results from this study 
suggest that positive detection of dead-shrub patches may be possible. 
 
Globally, shrublands are one of the least protected biomes, having undergone conversion to agriculture or 
invasion by exotic plant species (Brooks et al., 2004, Knick and Connelly, 2011). In the west, loss of 
shrublands has led to population declines for shrubland obligate species, such as sage-grouse (Peterjohn 
and Sauer 1999, Vickery et al., 1999, Brennan and Kuvlesky 2005, Askins et al., 2007). As land managers 
work towards developing conservation measures for sage-grouse, any additional information regarding 
the quality of sage-grouse habitat could prove useful. Remote detection of shrub mortality within 
otherwise live and healthy stands of sagebrush could be one such piece of additional information. Though 
negative classification results were achieved with this study, results of in situ spectral analysis imply that 
separation is possible. Additional research using more highly resolved sensors is merited. 
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