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Abstract: Wildland/Urban Interface (WUI) fires and Communities at Risk (CAR) projects are 

high priorities to federal land management agencies. It is important that the federal government 

help educate homeowners, firefighters, local officials, and land managers regarding the risk of 

wildland fire. The Bureau of Land Management’s (BLM) Upper Snake River District (USRD) 

Geographic Information Systems (GIS) team and the GIS Training and Research Center 

(GISTReC) at Idaho State University (ISU), have created a model to predict potential wildfire 

risk areas for Power County, Idaho. During this project models were created of specific individual 

risks associated with wildfires: topography, vegetation moisture, fuel load, and the number of 

structures at risk.  These models were evaluated together to create a final fire risk model for 

Power County, Idaho. This report describes each of the WUI fire risk components and what effect 

each has on the final fire risk model. This final model is an accurate depiction of the spatial 

distribution of wildfire risk in Power County, and can be used by regional fire managers to 

manage wildfire risk. 
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Introduction:   
The Wildland/ Urban Interface (WUI) is more than a geographic area.  It is anywhere homes and 

other anthropogenic structures exist among flammable vegetative fuels (Owens and Durland, 

2002).  Because wildland fire is an essential component of healthy ecosystems, people need to 

live compatibly with wildland fire (Owens and Durland, 2002).  As people move into the 

Wildland/ Urban Interface zones, planners and agencies responsible for fire management and 

protection are in need of tools to help them assess fire risk and make decisions regarding funding, 

development, and deployment of suppression resources.  One very valuable tool used by fire 

managers is Geographic Information Systems (GIS).  GIS allows for spatial analysis of large 

geographic areas and is easily integrated with satellite imagery. 
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Using these tools, we created 7 models that account for different types of fire risk.  The first 

model created was Fuel Load/ Vegetation Moisture.  This model takes into account how different 

levels of vegetation moisture affect fire risk.  The second component model was Fuel Load/ Rate 

of Spread.  This model takes into account how different fuel load classes spread and affect fire 

risk.  The third component model Fuel Load/ Intensity describes how different fuel load classes 

release heat energy during a fire.  The fourth component model, Slope/ Rate of Spread, takes into 

account how the angle of slope affects the rate of spread of a fire.  The fifth component model, 

Slope/ Suppression Difficulty, takes into account how varying slope affects the effectiveness of 

suppression efforts of firefighters and their equipment.  The sixth component model, Aspect/ Sun 

Position, takes into account different fire risks associated with aspect.  Finally the Structures at 

Risk component model takes into account structure density. Each of these component models are 

weighted and summed to produce the Final Fire Risk Model.  The Power County, Idaho WUI fire 

risk assessment is a continuation of WUI projects that have been completed and validated for the 

City of Pocatello, Idaho (Mattson et al, 2002) the city of Lava Hot Springs, Idaho (Jansson et al, 

2002), Clark County, Idaho (Gentry et al, 2003), and Bannock County, Idaho (Gentry et al, 

2003).    

 

Methods:  
Required data sets:        

-  Digital Elevation Model (DEM) of Power County 

- Landsat 7 ETM+ imagery for Power County and environs – Path 039, Row 030 and Path 

039, Row 031.  

-  Digital Orthophoto Quarter-Quads (DOQQs) for Power County 

-  Digital Raster Graphics (DRGs) for Power County 

-  Transportation dataset for Power County 

- Census data for Power County from the year 2002 

 

Data processing:        

We projected all datasets as Idaho Transverse Mercator (GCS North American 1927) using Arc 

Toolbox  Data Management Tools  Project. 
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The DEM for Power County was downloaded from http://srtm.usgs.gov/data/obtainingdata.html 

as a single seamless ArcInfo grid with 30m pixels. The Power County DEM was then clipped to 

the footprint of Power County using ArcInfo Workstation 8.2. 

 

Landsat 7 ETM+ (Path 039, Row 030 and Row 031), bands 1, 2, 3, 4, 5, and 7 were retrieved 

from the GIS TReC’s archives in Fast-L7A format and converted into ArcInfo grids.  These 

ArcInfo grids were also clipped to Power County using ArcInfo Workstation 8.2.   

 

The GIS TReC had all of the DOQQs and DRGs covering Power County.  These datasets were 

used for visual purposes only, and no processing was necessary as they were already projected 

into IDTM. 

 

The transportation dataset was also retrieved from the spatial library of the GIS TReC 

(http://giscenter.isu.edu/data/data.htm), and needed only to be clipped to the extent of Power 

County. 

 

A polygon shapefile containing census data for Power County was downloaded from 

http://arcdata.esri.com/data/tiger2000/tiger_download.cfm and used to define structure density.  

This dataset was converted to an ArcInfo grid using ArcMap’s Spatial Analyst extension. 

 

Primary Models: 

- NDVI model 

- Fuel Load model 

- Slope model 

- Aspect model 

 

Creating NDVI models 

We estimated vegetation cover with satellite imagery using the Normalized Difference 

Vegetation Index (NDVI) for Landsat 7 ETM+, dated 07-28-2002. The NDVI, which is an 

estimation of photosynthetically active vegetation, was calculated from atmospherically corrected 

reflectance from the visible red (band 3) and near infrared (band 4) bands of Landsat 7 ETM +. 

The resulting NDVI has an interval of –1 to +1, where –1 is no vegetation and +1 is pure 
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photosynthetically active vegetation. Equation 1 shows the argument used to calculate the NDVI 

grid in ArcMap  Spatial Analyst  Raster Calculator. 
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Equation 1: Equation for calculating NDVI. 

 

Once the NDVI grid was completed we made several raster calculations of the NDVI grid in 

ArcMap  Spatial Analyst  Raster Calculator to delineate wet vegetation, dry vegetation, and 

no vegetation. After each raster grid was made, we compared it to DOQQs.  A visual assessment 

determined that values >0.6 reliably indicated areas of photosynthetically active wet vegetation, 

values between 0.6 and 0.15 indicated photosynthetically active dry vegetation, and values <0.15 

indicated no photosynthetically active vegetation. 

 

Creating the Fuel Load Model   

Supervised classification of Landsat 7 ETM+ imagery was used for estimating fuel load in Power 

County.  To estimate fuel load, we used 419 sample points.  Forty-one of the sample points were 

collected in the summer of 2003 by Ben McMahan and Chad Gentry.  The remaining 378 points 

used were collected by Ben McMahan and Joel Sauder in the summer of 2002.  Each of the 

sample points was classified, by McMahan, Sauder, and Gentry, into one of 7 fuel load classes:  0 

= 0 tons/acre (No vegetation), 0.74 tons/acre (Grassland), 1 ton/acre (Grassland with some 

Sagebrush), 2 tons/acre (Low Sagebrush), 4 tons/acre (Typical Sagebrush), and = >6 tons/acre 

(Forest). 

   

To begin creating the fuel load model we imported bands 1, 2, 3, 4, 5, and 7 (Fast-L7A format) 

from two Landsat 7 ETM+ scenes (Path 39 Row 30 and Path 39 and Row 31) into ERDAS 

Software.   The digital number values of each of the bands were converted into radiance and from 

radiance into reflectance using ERDAS  Model Builder.  Once the bands were in reflectance 

we exported the files into grid format for use in ArcGIS 8.3.  All identical bands, from each of the 

scenes, were merged using Arc  Grid  Merge.  The merged grids were then exported to Idrisi 

32 Software in float file format.   

To develope our training sites we used 378 of the sample points.  These training sites were 

converted to raster using ArcView 3.3  Spatial Analysis  Convert to grid (we used ArcView 
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3.3, because it allowed us to select the spatial extent of an existing grid and also let us determine 

pixel size).  This grid was then exported to Idrisi in float file format.   

Once all our data was in Idrisi we created a signature file using our training site grid and Landsat 

7 ETM+ bands 1, 2, 3, 4, 5, and 7 using Idrisi 32  Image Processing  Signature Development 

 MAKESIG.  The signature file was used to make the fuel load model using Idrisi 32  Hard 

Classifiers  Maxlikely.  We checked this model using techniques described in the next section 

“Fuel load Model Validation”.  Our results showed that this fuel load model classified the higher 

fuel load classes well, but discriminated against the lower fuel load classes.  To try and improve 

the model accuracy a second model was created using Landsat 7 ETM+ bands 4, 5, 7,  the NDVI 

(Normalized Difference Vegataion Index), and a Principal Component Analysis consisting of all 

Landsat 7 ETM+ bands, PVI, NDVI, TSAVI, Tassled Cap Greeness, and Tassled Cap Brightness 

to create the signature file.  This signature file was used to create the second fuel load model.  

This model classified the lower fuel load classes well, but discriminated against higher fuel load 

classes.  These two fuel load models were then exported to ArcGIS 8.3 and the fuel load 

categories with low accuracy for each model were reclassified as No Data using ArcMap  

Reclassify.  These two model were then merged to create the final fuel load model using Arc  

Grid  Merge. 

   

Fuel Load Model Validation 

Each component was validated using a number of methodologies.  The first was a standard error 

matrix where each predicted (modeled) class was compared against the measured (field) class at 

all sample point locations.  The second validation method was a modified error matrix where 

similar classes were clumped together into sub-classes.  These classes were based on Anderson 

(1982) United States Forest Service (USFS) fuel load classes.  We also employed a third 

validation procedure using fuzzy set theory outlined in Congalton and Green (1999) whereby a 

threshold of acceptable error is established.  In the case of our models, the fuzzy set threshold was 

+/-1 tolerance class.  This procedure determined whether the predicted (modeled) class was 

within one class of the field-observed value.  The results of these tests are reported in the text as 

standard/expanded, clumped, and fuzzy-set-theory accuracies, respectively. 

 

We also completed a Kappa Statistic, using Keith T. Weber’s “Chance” program, for our model.  

This program allowed use to calculate the observed proportion of agreement (Po), the chance 

expected proportion of agreement (Pc), the Kappa statistic (Kappa), 95% confidence intervals 
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(LO-95 and HI-95), standard error (SE), and a test of significance (Z). The Kappa statistic 

describes how much better --or worse-- a classification performed relative to chance alone. 

 

Creating the Slope Model 

Using the Power County DEM, we made a slope grid that calculated the surface steepness using 

ArcMap  Spatial Analyst  Surface Analysis  Slope. 

Output measurement: degree 

Z-factor: 1 

Output cellsize: 30m 

 

 

 

Creating the Aspect Model  

Aspect shows what direction the surface faces.  We made the aspect model from the Power 

County, Idaho DEM in ArcMap  Spatial Analyst  Surface Analysis  Aspect.   

Output measurement: degree 

Output cell size: 30m 

 

Wildfire risk components: 

- Fuel Load/ Vegetation Moisture 

- Fuel Load/ Rate of Spread 

- Fuel Load/ Intensity 

- Slope/ Rate of Spread 

- Slope/ Suppression Difficulty 

- Aspect/ Sun Angle 

- Structures at Risk 

Creating the wildfire risk components 

Each component model was treated separately to learn how each affected fire risk. To be able to 

merge the models together easily, we reclassified each model using equal scales from 0 to 1000, 

where 1000 is highest risk.  We used weightings based on Mattsson et al. (2002) and Jansson et al 

(2002) to complete our analysis.  After completing these analyses, we examined the impact each 

fire model component had on the overall fire risk in Power County, Idaho. 
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Fuel load/ Vegetation Moisture 

We reclassified the Fuel Load grid and NDVI grid using ArcMap  Spatial Analyst  

Reclassify.  Table B-1 in Appendix B shows the reclassification table. To create the Fuel Load/ 

Vegetation Moisture component model we multiplied the fuel model with the NDVI model using 

ArcMap  Spatial Analyst  Raster Calculator. These values were then weighted based on 

Jansson et al. (2002) using ArcMap  Spatial Analyst  Reclassify, shown in figure 1.  The 

weightings used are shown in table B-2 in Appendix B.  
 

25

150
50

200
300

250

400

650
600

700

850

1000

0
100
200
300
400
500
600
700
800
900

1000

0 75 10
0

15
0

20
0

22
5

30
0

40
0

45
0

60
0

80
0

12
00

Classes

Fi
re

 R
is

k 
R

at
in

g

 
Figure 1.  Weightings for Fuel Load/ Vegetation Moisture (Jansson et al, 2002). 

Fuel load/ Rate of Spread 

We reclassified the Fuel load model, following Mattsson et al. (2002) (table B-3 in Appendix B), 

using ArcMap  Spatial Analyst  Reclassify (fig. 2). 
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Figure 2.  Weightings for Fuel Load/ Rate of Spread (Mattsson et al, 2002). 
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Fuel load/ Intensity 

We reclassified the Fuel load model using values following Mattsson et al. (2002) (table B-4 in 

Appendix B) using ArcMap  Spatial Analyst  Reclassify (fig. 3).  
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Figure 3.  This chart describes all weightings for Fuel Load/ Intensity (Mattsson et al, 2002). 

 

Slope/ Rate of Spread 

To make the Slope/Rate of Spread model, we reclassified the Slope model based on weightings 

from Mattsson et.al. (2002). These weightings are shown in table B-5 in Appendix B. We used 

ArcMap  Spatial Analyst  Reclassify (fig. 4). 
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Figure 4.  Weightings describe how spread rate increase with angle of slope.  The weight proportion is essentially 

exponential with slope angle (Mattsson et al., 2002). 
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Slope/ Suppression Difficulties 

To create the Slope/Suppression Difficulties model, we used the original slope and applied 

weightings for Slope/ Suppression Difficulties following Mattsson et al. (2002) (table B-6 in 

Appendix B).  ArcMap  Spatial Analyst  Reclassify, shown in (fig. 5).   
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Figure 5.  Weightings for slope/suppression difficulties describe how suppression difficulties are affected by the angle 

of slope (Mattsson et al, 2002). 

 

Aspect/ Sun position  

To create the Aspect/ Sun Position we reclassified the aspect grid, following Mattsson et al 

(2002) (table B-7 in Appendix B).  We used ArcMap  Spatial Analyst  Reclassify (fig. 6). 
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Figure 6.  Weightings for Aspect/Sun position describe how the sun desiccates the ground at different aspects 

(Mattsson et al, 2002). 
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Structures at Risk 

We used census data for Power County, found on the ESRI website 

(http://arcdata.esri.com/data/tiger2000/tiger_download.cfm) in tabular form. These tables were 

then joined with a corresponding shapefile of census tracts, obtained from the same web site.  The 

resulting dataset contained data on population as well as structures in each census tract.  Using 

ArcMap’s field calculator we divided the number of structures in each polygon by the area of that 

polygon to calculate structure density.  Next, we converted the structure density polygons into a 

grid and applied a linear regression to fit the values between 0 and 1000 to generate the final 

structures at risk grid.   

 

 

WUI fire risk model 

After developing the different fire model components, we weighted and summed each component 

into the final fire risk model.  Weightings were based on a regional fire manager, Fred Judd (pers. 

comm.).  Beginning with the highest, we distributed each component as follows: 

• Structures at Risk 22% 

• Fuel load/ Rate of Spread 17% 

• Fuel load/ Intensity 17% 

• Fuel load/ Vegetation Moisture 11% 

• Slope/ Rate of Spread 17% 

• Slope/ Suppression Difficulties 11% 

• Aspect/ Sun position 5% 

These component models were weighted appropriately in a multi-criterion evaluation.  This 

calculation was done in ArcMap  Spatial Analyst  Raster Calculator. 

 

Results: 
We compared the WUI fire risk models for Clark County, Bannock County and Power County, 

Idaho (Gentry et al 2003).  Figure 8 shows portions of each county classified as low, medium, 

and high risk relative to individual areas.  Comparison between total acres classified as low, 

medium, and high fire risk is shown in table 1.  Figure 9 describes the Fuel load distribution for 

each county. Table 2 show total acres of BLM Land classified as low, medium, and high fire risk.  
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Figure 8.  Percent of Clark County, Bannock County, and Power County, considered low, medium, and high fire risk. 

 

 

Table 1. Total acres classified as low, medium, and high fire risk for Clark, Bannock, and Power County. 

Total Acres Classified as low, medium, and high fire risk 

  Clark County Bannock County Power County 
Low  395,360 413,146 233,958 
Medium  666,464 277,805 638,886 
High 67,776 21,370 26,996 
Total 1,129,600 712,321 899,840 

 
 
 
Table 2. BLM land area classified as low, medium, and high fire risk. 

BLM Land Classified as low, medium, and high fire risk 
  Km2  Acres Percent 
Low 107 26,330 12% 
Medium 741 183,133 81% 
High 63 15,468 7% 
Total 910 224,931  
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Figure 9.  Comparison of fuel load distribution for Clark County (A), Bannock County (B), and Power County (C). 
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The NDVI grid used to generate the fuel load model is shown in figure 10.  Our reclassified 

NDVI grid estimating the location of wet vegetation, dry vegetation and no vegetation is shown 

in Figure 11.  Figure 12 illustrates the Fuel Load model derived from field training sites and 

Landsat 7 ETM+ satellite imagery. Table 2 shows the error matrix validation for the fuel load 

model.  Table 3 shows the kappa statistics for the fuel load model. 

 
Figure 10.  The NDVI has an interval of –1 to +1, where –1 is no vegetation and +1 is pure vegetation. 
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Figure 11.  The results of the reclassification of NDVI into no vegetation (100), dry vegetation (200) and wet 

vegetation (75). 

 

 
 
Figure 12.  The fuel load model and the distribution of different fuel load classes for Power County, ID. 
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Table 3. Error matrix for the fuel load model. 

Field Measurement of Fuel Load (Tons/Acre)   
    0.74 1 2 4 >6 Total Acc % 

0.74 33 11 5 6 1 56 58.93%
1 15 23 21 10 2 71 32.39%
2 17 25 42 27 5 116 36.21%
4 7 12 37 59 8 123 47.97%

 
 

Modeled 
Fuel Load  

 
(Tons/Acre)  

>6 0 4 2 1 5 12 41.67%
Total 72 75 107 103 21 378   

Acc % 45.83% 30.67% 39.25% 57.28% 23.81%
Standard/ 
Expanded 42.86%

            
USFS/ 
Anderson 66.67%

              
Fuzzy Set 
Theory 81.22%

 

Table 4.  Kappa Statistics for the fuel load model. 

PC PO KAPPA LO-95% CI HI-95% CI SE Z 

0.242784 0.428571 0.245356 0.178126 0.312585 0.029124 8.424444
 

The three component models derived from the fuel load model are shown in figures 13, 14, and 

15.  Figure 13 is the vegetation moisture model, irrigated and riparian areas contain the lowest 

risk values, while the grasses and shrubs in the Snake River Plain portion of Power County 

contain the highest values.  The high risk areas are due to the low moisture content associated 

with sagebrush steppe that dominates the area. The effect of fuel load on fire’s spread rate is 

reported in figure 14.  Mountainous areas, with larger fuel loads, contain the lowest values, where 

grasses and shrubs in the Snake River Plain portion of Power County contain the highest values. 

The high risk areas are due to the high concentration of 4 tons/acre fuels.  Finally, figure 15 is the 

intensity model.  Conifers in the highlands, especially in the southern part of the county, comprise 

the highest risks for the most intense fires. 
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Figure 13.  The Fuel Load/ Vegetation Moisture model.  This model expresses how vegetation moisture and the 

combination of different fuel load classes affect fire risk.  This model was given an overall weighting of 11% of the final 

model. 

 
Figure 14.  The Fuel Load/ Rate of Spread model.  This model expresses the fire risk associated with the spread rate of 

different fuel load classes.  This model was given an overall weighting of 17% of the final model. 
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Figure 15.  The Fuel Load/ Intensity model.  This model expresses the fire risk associated with the amount of heat 

energy (intensity) each fuel load class gives off.  This model was given an overall weighting of 17% of the final model. 

 

The next three figures (16-18) are the component models generated using the Power County 

DEM.  Figure 16 assesses the risk of fires spreading quickly due to steep slopes.  Here, the 

highlands in the southern portions of the county received the highest values and the bottom land, 

with shallow slopes, in Arbon Valley, Rockland valleys and northern part of the county received 

the lowest values.  Next is the suppression difficulty model (figure 17), where steeper slopes pose 

increasingly greater problems to fire fighters attempting to access fires in order to suppress them.  

Once again, the steeper terrain in the south is weighted the highest risk.  Figure 18 is the Aspect/ 

Sun Position component model, south and southwest aspects contain the highest fire risk, due the 

intense sunlight and prevailing wind exposure.  North and East facing slopes, which are sheltered 

from intense sunlight and prevailing wind through much of the day, contain the lowest fire risk.  
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Figure 16.  The Slope/ Rate of spread model.  This model expresses how different angles of slope affect the spread rate 

of fire. Steeper slops are given the highest fire risk.   This model was given an overall weighting of 17% of the final 

model. 

 

 

Figure 17.  The Slope/ Suppression Difficulty model.  This model expresses how different slope angles suppression 

efforts of firefighters. This model was given an overall weighting of 11% of the final model. 
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Figure 18.  The Aspect/ Sun Position model.  This model expresses how different aspects affect fire risk.  Southern 

aspects have the highest fire risk.  This model was given an overall weighting of 5% of the final model. 

 

The Structures at Risk component model is shown in figure 19. Here the population centers of 

American Falls and Rockland contain the highest structure density and the highest fire risk.   
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Figure 19.  The Structures at Risk model.  This model expresses areas that are high risk due to high 

structure density and is given an overall weighting of 22% of the final model. 

 

The Final Fire Risk Model is shown in Figure 20 and the fire risk model with BLM lands 

superimposed is in Figure 21.  Figure 22 shows fire history from 1939 – 2002, superimposed.  

 
Figure 20.  The Final Fire Risk Model for Power County, Idaho.  Fire risk is shown on a graduated symbology. 
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Figure 21. BLM lands within Power County. 

 

 

 
Figure 22. Fire history for Power County, 1939-2002 
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Discussion: 
Clark, Bannock, and Power Counties are considered high desert sagebrush steppe ecosystems.  

Clark County has the largest area, with 1,765 square miles (1,129,600 acres).  Power County is 

the second largest with 1,406 square miles (899,840 acres), followed by Bannock County with 

1,113 square miles (712,321).  Clark County has the highest total acres, classified as high fire 

risk, with 67,776 acres, followed by Power County with 26,996 acres and Bannock with 21,370 

acres.  The high fire risk classification for all three counties is concentrated in the mountainous 

areas.  This is due to the influence of the topography component models Aspect/ Sun Position, 

Slope/ Suppression Difficulty, and Slope/ Rate of Spread.  Clark County and Power County had 

the highest medium risk classification.  This is due to the strong influence of the fuel load model. 

The southern portion of Clark County and the northern portion of Power County are located 

within the Snake River Plain which consists of primarily 1, 2, and 4 tons/acre fuels. 

   

NDVI values vary with absorption of red light by plant chlorophyll and the reflection of infrared 

radiation by water-filled leaf cells.  It is correlated with Intercepted Photo-synthetically Active 

Radiation (IPAR) (Land Management Monitoring, 2003).  In most cases (but not all) IPAR and 

hence NDVI is correlated with photosynthesis. Because photosynthesis occurs in the green parts 

of plant material the NDVI is normally used to estimate green vegetation.  The NDVI is a 

nonlinear function which varies between -1 and +1 but is undefined when RED and NIR are zero 

(Land Management Monitoring, 2003).  Early in this project we determined thresholds for no-

vegetation, dry-vegetation, and moist vegetation using NDVI. We chose the value 0.15 as a 

threshold between no vegetation and general vegetation based on where and how well the NDVI 

values matched a DOQQ. We chose the second threshold (separating dry vegetation from 

moisture vegetation) using similar methods.  The NDVI value of 0.6 was the threshold limit 

between dry vegetation and moist vegetation.   

 

The overall accuracy of the 2003 fuel load model was quantified using all three methodologies 

described above (standard/expanded, clumped, and fuzzy set).  These results emphasize the 

difficulties associated with using multispectral remote sensing imagery to delineate vegetation 

types with extremely similar spectral signatures.   

 

The Structures at Risk component was weighted most heavily (22%).  This is due to the nature of 

this project; we were most interested in quantifying risk for the Wildland/ Urban Interface.  This 

model allowed us to emphasize the interface areas.  Areas of high structure density received the 
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highest fire risk values and areas of low or no structure got the lowest fire risk values.  The 

Structures at Risk component shows that of all three counties, Bannock, by far, has the largest 

population with 75,323, while Power County has a population of 7,468 and Clark County has 971 

(U.S. Census Bureau Quick Facts 2003).  Though each county has a relatively large area (Clark- 

1,765 sq. miles; Power- 1,406 sq. miles; Bannock- 1,113 sq. miles), the structure density 

component model for Bannock County shows the highest risk to structure (U.S. Census Bureau 

Quick Facts 2003). 

 

The Fuel Load/ Rate of Spread takes into account how fast a fire will spread depending on 

different fuel load classes.  The lower fuel load classes were considered to be the primary carrier 

of fire (e.g. grasses), and have the fastest spread rate.  Fuel Load class 4 tons/acre received the 

highest fire risk value, because of its high load of fine, low-standing fuels.  Fuel Load class >6 

tons/acre received the lowest fire risk value since these fuels are of a larger size and higher 

moisture content, so they will not ignite as quickly.  

 

The Slope/ Rate of Spread component model takes into account how different angles of slope 

affect the rate of spread of a fire.  When fire moves across flat land it moves more slowly than 

fire moving up a mountainside (Amdahl, 2001).  The steeper angles in this model have the highest 

fire risk values, because fire increases exponentially with slope.  Correspondingly, shallower 

angles have lower fire risk values. 

 

The Fuel Load/ Vegetation component accounts for moist vegetation and different fuel load 

classes that may be abundant but not readily flammable.  Areas with dry vegetation and high fuel 

load (>6 tons/acre) had the highest fire risk value.  Areas that had wet vegetation and lower fuel 

load had the lowest fire risk values. 

 

The Fuel Load/ Intensity component takes into account how intense a fire of different fuel load 

classes affects fire risk.  Intensity is considered the amount of energy a fire produces.  The more 

energy the fire produces, the more difficult it is for the firefighters to suppress it.  Intense fires 

create their own wind system, drying out fuel ahead of the fire.  This intensity depends on fuel 

load and other factors such as wind and ground conditions at the time of the fire. Thus, if 

firefighters do not suppress the fire, it will keep spreading. The fuel load class >6 tons/acre had 

the highest fire risk value, due to the high intensity fires associated with these larger fuels. 
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The Slope/Suppression Difficulties component describes how difficult it is for firefighters to 

suppress fire based on slope/terrain steepness.  If firefighters cannot reach the fire, it will keep 

burning even though it may be a low risk area according to other criteria.  Slopes that are > 20 

degrees affect wheeled vehicle support and slopes > 30 degrees affect tracked vehicle support.  

Without the aid of motorized equipment support suppression efforts are slowed, allowing the fire 

to spread.  Slopes with the greatest degree of inclination had the highest fire risk values and 

shallow slopes received the lowest fire risk values.  

 

The Aspect/ Sun position component models the direction each slope faces and the extent to 

which the sun desiccates the ground/vegetation.  The sun will desiccate the ground/vegetation 

more on southern aspects and least on northern aspects.  Southern aspects received the highest 

fire risk values and northern aspects received the lowest. 

 

Assessments of error and bias:  
All estimations in this report are made based upon our knowledge of the criteria and the expert 

knowledge of Keith T. Weber, Felicia Burkhardt, and Fred Judd.  We have discussed our analyses 

and results with these people and believe our results to be valid. 

 

The goal for our model is to be a tool to assist fire managers and decision-makers. As we treated 

each analysis separately, we believe the results have accuracy adequate to fit this purpose. We 

further believe our model gives a good overview of the fire risk in our study area and that it is 

easy to understand. Because the model is easy to understand, it should be applied to other users, 

which was a primary objective with this study. 

 

Not all conditions affecting wildfire could be accurately modeled in this study.  Factors not taken 

into account, such as wind direction and wind speed, are difficult to model without building many 

assumptions into the model (e.g., yearly weather patterns).  Since the scope of this study is broad, 

we felt that removing these factors from the final model helped its overall effectiveness as a 

management tool.  This also allowed us to place more emphasis on the factors us and Fred Judd 

(pers.comm.) felt were more important. 

 

The date (July 28, 2002) during which the Landsat 7 ETM+ data was gathered plays a significant 

role in the outcome of the Fuel Load-based components of the final model.   
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Appendix A – Cartographic Model 
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Appendix B – Weightings  
 
These tables show the weightings we used to weight our fire risk model components. 
 
                          
 
 
       
Table B-1:  Reclassification system of the  
Fuel Load and NDVI grids.  Compare with figure1. 

Fuel Load NDVI 

0 = 0 tons/acre 100 = No Vegetation 

1 = 0.74 tons/acre 200 = Dry Vegetation 

2 = 1 tons/acre 75 = Moist Vegetation 

3 = 2 tons/acre  

4 = 4 tons/acre  

6 = >6 tons/acre  
 

                                                                                                    
        Table B-2:  Weighting data for Fuel Load/                         
        Vegetation Moisture component model (Jansson et al. 2002).     
         Compare with figure 1. 

Fuel 
Load * 

Vegetation = Class Weights 

1 75 75 150 
1 100 100 50 
2 75 150 200 
1 200 200 300 
3 75 225 250 
4 75 300 400 
2 200 400 650 
6 75  450 600 
3 200 600 700 
4 200 800 850 
6 200 1200 1000 

          
 

                          
Table B-3:  Weighting data for Fuel Load/ 
Rate of Spread.  Compare with figure 2.                 

Classes 
(Tons/acres) Weights 

< 0.74 0 
0.74 800 

1 850 
2 950 
4 1000 

>6 600 

      Table B-4:  Weighting data for Fuel Load/ 
       Intensity.  Compare with figure 3. 

Classes 
(Tons/acres) Weights 

< 0.74 0 
0.74 74 

1 100 
2 200 
4 400 

>6 1000  
 
 
 
 
Table B-5:  Weighting data for Slope/ Rate 
of Spread.  Compare with figure 4. 

Angle/degree 
Intervals Weights 

0—10 41
10—20 137
20—30 256
30—40 489
40—50 1000 

     Table B-6:  Weighting data for Slope/  
     Suppression Difficulties.  Compare with figure 5. 

Angle/degree 
 Intervals Weights 

0--10 100 
10--20 200 
20--30 850 
30--40 1000 
40--50 1000 
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     Table B-7:  Weighting data for Aspect/ 
     Sun Position.  Compare with figure 6.                   

Degree 
Interval Aspect Weight 
337.5--22.5 N 100
22.5--67.5 NE 150
67.5--112.5 E 300
112.5--157.5 SE 800
157.5--202.5 S 1000
202.5--247.5 SW 1000
247.5--292.5 W 700
292.5--337.5 NW 200 

    Table B-8:  Weighting data for Response Time.    
    Compare with figure 7. 

Time (Seconds) Weights 
30 292 
60 319 
90 367 
120 403 
150 444 
180 500 
210 597 
240 694 
270 819 
300 1000  
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Appendix C – Data dictionary 
Data  File name  Full path to dataset  Description  Format 

County bound  power_idtm.shp  \\Alpine\Data\urbint\Power\all_datasets  Boundary of Power county  polygon coverage 

Roads  Power_streets.shp  \\Alpine\Data\urbint\Power\all_datasets  Roads and streets in Power County  line shapefile 

 B3mrger30r31  \\Alpine\Data\urbint\Power\all_datasets  Landsat Band 3 for Power County  Grid  - 28.5m pixels 

 b4mrger30r31  \\Alpine\Data\urbint\Power\all_datasets  Landsat Band 4 for Power County  Grid  - 28.5m pixels Bands used  
for NDVI 

 pow_ban_ndvi  \\Alpine\Data\urbint\Power\all_datasets  Landsat NDVI model for all of Power and Power County  Grid  - 28.5m pixels 

Fuel Load  fuelload_id  \\Alpine\Data\urbint\Power\all_datasets  Fuel Load model for Power County.  Classes are .74 tons/acre, 1 
tons/acre, 2 tons/acre, 4 tons/acre, and  =>6 tons/acre 

 Grid  - 28.5m pixels 

DEM  powban_dem  \\Alpine\Data\urbint\Power\all_datasets  Digital Elevation Model of Power County  Grid  - 30m pixels 

 pow_aspec_id  \\Alpine\Data\urbint\Power\all_datasets  Risk associated with aspect angle i.e. North, East,…….  Grid  - 30m pixels 

 pow _slpspr_id  \\Alpine\Data\urbint\Power\all_datasets  Risk associated with how fire spreads with angel of slope.  Grid  - 30m pixels 

 pow _slpsup_id  \\Alpine\Data\urbint\Power\all_datasets  Risk associated with how Suppression efforts are affected by 
angle of slope. 

 Grid  - 30m pixels 

 pow _spread_id  \\Alpine\Data\urbint\Power\all_datasets  Risk associated with how quick different fuel load classes spread 
during a fire. 

 Grid  - 26m pixels 

 pow _intsty_id  \\Alpine\Data\urbint\Power\all_datasets  Risk associated with how intense (release heat energy) different 
fuel load classes burn.  

 Grid  - 26m pixels 

 pow _vgmst_id  \\Alpine\Data\urbint\Power\all_datasets  Risk associated with vegetation moisture.  Grid  - 26m pixels 

Component 
models 

 pow_densty_id  \\Alpine\Data\urbint\Power\all_datasets  Risk associated with structure density.  Grid  - 30m pixels 

Final Model  pow_final  \\Alpine\Data\urbint\Power\all_datasets  Final risk model - 30m pixels - ArcInfo Grid  Grid  - 30m pixels 

Reports  Power_WUI_Final_Report  \\Alpine\Data\urbint\Power\reports  Report covering methods, results, & conclusions of WUI 
modeling 

 Word Document 

 


