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Abstract 
To better understand the factors driving increased wildfire frequency since 1950 across the 
western United States (Davis & Weber, 2018), the environmental conditions (i.e. fuel 
availability, hazard, and ignition source) required for a wildfire to occur were investigated. 
Specifically, this study investigated the effect of several weather variables (i.e. maximum and 
minimum monthly mean temperature, and cumulative monthly precipitation) and the El Nino 
Southern Oscillation (ENSO) on biomass production in the Intermountain West between 2001 
and 2019. Trends in these weather variables were compared with wildfire frequency, which 
while quite high relative to pre-millennial, has been relatively constant over the past two 
decades. This study also investigated the length of the growing season over the past two decades. 
NOAA’s Global Hydrological Climatology Network (GHCN) Version 1 dataset was acquired for 
all weather variables while biomass production was estimated using Normalized Difference 
Vegetation Index (NDVI) data acquired from the MODIS Terra NASA Earth Observing System 
satellite imagery. ArcGIS Pro models were developed to perform all spatial analyses and python, 
excel, and Jmp were used for statistical analysis and data visualization. While the results of this 
study clearly show that weather variables, specifically precipitation and maximum temperature, 
are important drivers of vegetation production (P < 0.05; R2 = 0.69) across the semiarid 
ecosystems of the intermountain west, no significant change in either of these variables was 
detected over the past two decades.  Furthermore, no change was observed for the length of the 
growing season as indicated by NDVI data for this same time period. These results correspond 
well with the relatively constant nature of wildfire frequency over the same spatiotemporal 
extent. 
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Introduction  
Wildfires play an important role in ecology of forest and savanna ecosystem (Brown et. al, 
2000). Wildfire frequency has increased between 1950 and 2017 across the Western United 
States (Davis and Weber, 2018) – a region including 11 states (Arizona, California, Colorado, 
Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) (Figure 1).  

Many factors such as fuel load/continuity, weather (e.g., temperature and precipitation), climate 
(e.g., El Nino Southern Oscillation (ENSO)), and source of ignition (e.g., lightning) play a role in 
wildfire occurrence (Figure 2). In essence, each factor needs to exist to a sufficient degree for a 
wildfire to occur.  Thus, these factors can be viewed as wildfire pre-requisites or precursors. 
Bearing this relationship in mind, this study decomposes the problem of understanding 
increasing wildfire frequency by exploring one of the most basic factors that directly influence 
wildfire, fuel load.   

Figure 2: Conditions required for a Wildfire to occur. 

Fuel load and fuel continuity are directly related to vegetation or biomass production. Increases 
or decreases in vegetation production affect a landscape’s susceptibility to fire by affecting fuel 
load, continuity, and over time, its combustibility to burning. Measuring vegetation production, 
or in the case of this study, wildfire fuel production is very difficult to accomplish across a study 
area that is over 160,000 km2 in size (Figure 1). For the purposes of this study, we will estimate 

Figure 1: The Intermountain west (left box) was the focus of this study. 
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fuel production using the normalized difference vegetation index (NDVI) from MODIS Terra 
NASA Earth Observing System (EOS) satellite imagery.  

The purpose of this study was to investigate the effect of maximum, and minimum monthly 
temperature, cumulative monthly precipitation, and ENSO on biomass production acorss the 
intermountain west (Figure 1). This study used multiple regression analysis to estimate the effect 
of each weather variables on biomass production. This study also investigated the length of the 
growing season in the study region for the period of 2001 – 2019. 
 
Methods 
Data collection. Normalized Difference Vegetation Index (NDVI) data were acquired from Terra 
Moderate Resolution Imaging Spectroradiometer (MODIS) NASA Earth Observing System 
satellite imagery with all imagery available from 2001 to 2019 across the Intermountain West. 
These NDVI data were developed from the dataset generated by Terra MODIS MOD13Q1 
Version 6 sensor. This sensor generates imagery everyday which are combined to produce a 
NDVI composite product at a 16-day interval with a pixel size of 250 m2 (Huete et. al, 1999).  
 
Weather variables (i.e. maximum, and minimum temperature, and monthly cumulative 
precipitation) were downloaded from NOAA’s Global Hydrological Climatology Network 
(GHCN) version 1 dataset in a NetCDF format and converted to a gridded (raster) 5 km monthly 
dataset. GHCN version 1 is a comprehensive, surface baseline climate dataset created by using 
with more than 6,000 temperature recording stations and 7,000 precipitation recording stations 
monitoring weather across the continental United States (Vose et. al, 2014). This dataset uses a 
monthly temporal scale and a 0.5⁰ × 0.5⁰ spatial scale stored in a NetCDF raster format. 
 
The climate variable (ENSO) was obtained from NOAA’s Physical Science Laboratory with a 
monthly temporal scale stored in Microsoft Excel format. ENSO data were acquired from the 
Multivariate ENSO Index (MEI) Version 2. This dataset combines oceanic and atmospheric 
variables to produce a single ENOS index value each month (Wolter et. al, 2012).  
 
Wildfire frequency data for the time period of 2001 – 2019 were collected from the Historic 
Fires Database (HFD) maintained by the Idaho State University’s GIS Training and Research 
Center. The HFD was assembled by acquiring wildfire perimeters from authoritative sources 
across the western US from 1950 to 2019.  
 
Spatial Analysis. The weather dataset was extracted into tiff raster images using “Make NetCDF 
a Raster Layer” in Esri’s ArcGIS Pro. The newly extracted dataset was projected to Albers Equal 
Area Spatial Reference System (WIKID: 102039) using the “Project Raster” data management 
tool. The weather, and NDVI datasets were clipped to the intermountain west study region using 
the “Clip Raster” data management tool. The “zonal statistics as table” tool was used to create 
tables with mean, median, standard deviation, and range statistics for each of these datasets. The 
geodatabase tables were exported to Excel using the “Table to Excel” tool for statistical analysis. 
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An ArcGIS Pro model was created to investigate the length of the growing season. The model 
ingested each 16-day composite NDVI images as an input parameter, extracting only those data 
with NDVI values ≥ 0.30 to create output tables showing the count of pixels that satisfied this 
criterion. The 0.30 threshold value was selected as NDVI values below 0.3 indicate a lack of 
green vegetation (Huete et. al, 1999). Summary statistics were calculated giving the sum of the 
NDVI pixels satisfying this criterion on each date. These tables were converted into Excel files 
using the “Table to Excel” tool for further statistical analysis and to determine the length of the 
growing season between 2001 and 2019.  
 
Statistical Analysis. Excel was used to calculate descriptive statistics and to graph these datasets. 
A multiple regression analysis was performed using a 95% confidence interval with Jmp 
software to determine the correlation of each weather variable with NDVI. To facilitate 
exploratory statistical analysis, the two years with the most extreme difference in weather 
variables were selected and compared using single factor ANOVA.  
 
Results and Discussion  
Effect of climate, and weather variables on biomass production. Results of the multiple 
regression analysis indicate cumulative precipitation and maximum temperature have the greatest 
effect on biomass production in the intermountain region (Table 1). The R2 (0.69) of the multiple 
regression model indicates that 69% of the variability in the monthly NDVI values could be 
predicted by the model (i.e., cumulative monthly precipitation, maximum and minimum 
temperature, and ENSO). Minimum temperatures and ENSO were found to have the least effect 
on biomass production. Higher biomass production would lead to higher fuel load, increasing the 
susceptibility of the area to wildfire. However, too high temperature could decrease biomass 
production by potentially causing higher evapotranspiration and water loss in the vegetation 
(Teskey et. al, 2015). 
 
Table 1: Results of multiple regression analyses determining the effect of weather and climate variables on NDVI. 

 
P-Value 

Precipitation <0.0001 
Maximum Temperature <0.0001 
Minimum Temperature 

ENSO 
  0.14 
  0.64 

 
Trend analysis of the cumulative precipitation and maximum temperature in the new 
millennium (2001 – 2019). No statistical difference was found between the trends of monthly 
maximum temperature (Figure 3). An insignificant P-value (> 0.05) was found for when testing 
the two most dissimilar years (2011 and 2012). 
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Similarly, no change in the trend of cumulative monthly precipitation was found (Figure 4). 
However, a significant p-value (<0.05) was found for the single factor ANOVA test between two 
years with high mean difference (2005 and 2013). This indicated change in patterns of the 
cumulative precipitation between the years 2005 and 2013.  

Although these two years were different, the graph of upper and lower confidence levels 
confirms annual median cumulative precipitation was quite similar (Figure 5). An insignificant 
P-value (>0.05) was found using ANOVA for the time period (2001 – 2019).  

 

 

Figure 3: Visualizing the trends in maximum temperature (⁰C) in the new millennium across the intermountain west 
region 

Figure 4: Visualizing the trends in cumulative monthly precipitation (mm) in the new millennium across the 
intermountain west region 

Figure 5: Upper and lower confidence limits of median cumulative monthly precipitation for each year (mm) in 
the new millennium across the intermountain west region. 
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Length of growing season in the new millennium (2001 – 2019). No change in the length of 
growing season between 2001 and 2019 was observed in this study (Figure 6). While some years 
show an earlier green up (2015) and other show a later green up (2008). These variations were 
found to be normal.  

A single factor ANOVA test was conducted between the year 2008 and 2015. These years were 
chosen because of the high difference in the annual averages of NDVI sums in the new 
millennium. The p-value for the ANOVA test was found to be significant (< 0.05) indicating 
statistical difference in green up between these two years.  
 
Although these two years displayed variation, the upper and lower confidence limit graph 
confirms NDVI values (≥ 0.3) were very similar (Figure 7). This indicates no significant changes 
should be expected in biomass production across the intermountain west region based on these 
data. 

 

Figure 7: Visualizing the upper and lower confidence limits for the frequency of pixels exhibiting photosynthetic 
activity (≥0.3) across the intermountain west region between 2001 and 2019. 

Trend analysis of the wildfire frequency in the new millennium at the Idaho: No significant 
increase in wildfire frequency was found between 2001 and 2019 (Figure 8). Some years were 
found to have higher wildfire frequency (e.g., 2007) than others (e.g., 2004); however, the 
overall trend is slightly declining over this two-decade time period (Figure 8). This follows very 
similar, overall constant trends in weather variables, and length of growing season as indicated 
by the NDVI data. 

 Figure 6: Visualizing green up over the study for the time period of 2001 – 2019. 
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Assessment of Errors and Uncertainty  
The temporal range used in this study presents a concern. Phenomenon such as change in 
temperature and precipitation patterns, length of growing season, and wildfire regimes take place 
over long time periods. The brief temporal range (i.e., 2001 – 2019) used in this study might not 
enable detection of change. However, studies such as this are constrained to the availability of 
data and specifically the MODIS NDVI product which is not available prior to 2001 (Huete et. 
al, 1999).  
 
In addition, the averaging of weather and NDVI variables over a spatial scale size of this study 
area (i.e. 160,000 km2) likely minimized the micro-climate effects on biomass production. A 
future study needs to be conducted using a more refined spatial scale to better explore changes of 
biomass production over longer time periods. 

Conclusions  
Long term changes in the wildfire regime have created the need to study the parameters driving 
these changes (Gorte, 2013). A pre-cursor of wildlife is the presence of sufficient fuel and its 
continuity. This study used multiple regression analysis to examine the effect of climate and 
weather variables on biomass production. Results indicate cumulative precipitation and 
maximum temperature are primary drivers. While these factors have been shown to drive 
biomass (and therefore fuel) production, no change in annual cumulative precipitation or 
maximum temperature was observed for the time period of this study (2001 – 2019).  
Furthermore, no change in the length of growing season was detected for the same time period. 
Similarly, no change in wildfire frequency was detected for the same time period across the 
study area. While it has been demonstrated previously that wildfire frequency and annual area 
burned has increased since 1950, since the new millennia, wildfire frequency has been relatively 
constant. This suggests the factor(s) responsible for the change occurred prior to the time period 
of this study.   
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