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ABSTRACT 
The production of vegetation biomass is a key parameter toward understanding wildfire fuels.  
This study sought to identify the primary drivers of biomass production throughout the 
hydrologic water year (October through September) across the western United States between 
2001 and 2019. National Oceanic and Atmospheric Administration (NOAA) monthly minimum 
temperature, maximum temperature, and cumulative precipitation data were used as explanatory 
variables, along with growing degree months (derived from temperature data), to model 
maximum Normalized Difference Vegetation Index (NDVI) using a multi-variate ordinary least 
squares (OLS) analysis. The results of this study indicate the relationship between biomass 
production and the explanatory weather variables used in this study is not linear. Furthermore, 
while the general outcomes of this study illustrate promising spatio-temporal trends, none of the 
results from OLS were statistically significant. Additional research using non-parametric and 
non-linear modeling is necessary to accurately characterize the interaction between weather 
variables and vegetation production. 
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INTRODUCTION 
Since the 1950’s, the frequency and size of wildfires across the western United States has 
increased substantially (Weber and Yadav 2020). In order for a fire to burn, three criteria must be 
met, the presence of (1) fuel, (2) oxygen, and (3) a source of ignition. Without any one of these 
fire triangle components (https://www.nps.gov/articles/wildlandfire-facts-fuel-heat-oxygen.htm) 
a fire cannot exist. With this understanding, we asked what changed to allow for the current fire 
regime? 
 
Since the availability of oxygen has been more or less constant over the past centuries, we 
dismissed this as a driver variable behind this phenomenon. An ignition source that provides 
sufficient heat to allow a fuel to combust is not as readily dismissed.  While the prevalence of 
lightning --the primary ignition source of wildfire-- has likely been relatively constant, the co-
occurrence of rainfall along with lightning is not well understood. For example, if a thunderstorm 
produces both lightning and precipitation, the likelihood of a wildfire ignition is relatively low 
compared to a dry-thunderstorm. If dry thunderstorms are more common today than they were 
just a few decades ago, then the changing ignition regime could help explain the increase in 
wildfire frequency seen today. In addition, the role of man in both managing the landscape and 
either accidentally or intentionally starting fires may also help explain the change in fire 
frequency observed over the past few decades (Balch et al. 2017). In essence, an increase in 
human population increases the probability for human-caused wildfires (Radeloff et al. 2005). 

https://www.nps.gov/articles/wildlandfire-facts-fuel-heat-oxygen.htm
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However, even if a change in the ignition regime could be demonstrated, this would not readily 
explain the increase in fire size currently observed. In a previous paper, we found the mean fire 
size increased from 1,204 acres in the decade of the 1950s to 3,474 acres for the decade between 
2010 and 2019 (Weber and Yadav 2020). Thus, a reasonable explanation for this change points 
to the final portion of the fire triangle, fuel.   
 
Wildfire fuels include both live and dead biomass that must be dry enough to combust. Weather 
(precipitation, heat, and humidity) is the key driving factor influencing fuel moisture. In addition, 
fuels must be continuous to carry a fire across the landscape. Areas of sparse vegetation can and 
will burn but the likelihood of a fire growing into a 100,000+ acre megafire is extremely low. 
Thus, fuel load, availability, and continuity are very important components which may be 
affected by changing climate as well as land management policies and practices (e.g., long-term 
fire suppression leading to fuel stockpiling).  
 
In a previous paper (Weber and Walz 2021), another fuel related variable was explored, namely 
length of the growing season. In that study, the hypothesis was that a longer growing season 
would likely --though not absolutely-- lead to a longer fire season and the potential for more 
wildfires. However, the results of that study found the length of the growing season has been 
quite stable since the year 2000. Still, these results do not fully answer the question due to the 
temporal limitations of that study (2001-2019). Furthermore, these results highlight the need for 
a similar study using a broader temporal scope. 
 
The current study sought to identify the primary drivers of biomass production throughout the 
hydrologic water year (October through September). The results of this study will allow for an 
increased understanding of wildfire fuel production and ultimately, improved land management 
decisions. 
 
METHODS 
Study Area 
The study area is a region covering approximately 3 million km2 and 11 western states (Arizona, 
California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and 
Wyoming) (Figure 1). The study area contains numerous vegetation types and ecosystems 
including coniferous forests, grasslands, shrublands, sparsely vegetated areas, hardwood forests, 
and riparian areas. The conifer, grassland, and shrubland vegetation types together comprise 78% 
of the study area (Figure 2).  
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Figure 1. The study area is a region including 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, 
New Mexico, Oregon, Utah, Washington and Wyoming). The majority of wildfires in the conterminous United States 
occur in this region. 

 

Figure 2 Percent cover by vegetation type for the study area. Conifer, grassland, and shrubland make up 78% of the 
land cover. 

 
 



4 
 

Spatial Data 
Land cover and vegetation biomass 
Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day composite NDVI data 
(MOD13) were used to identify vegetation production across the study area. This dataset 
contained 23 composite NDVI images annually (2001-2019) or 414 data layers in total and has a 
250-meter x 250-meter spatial resolution. These data were organized by hydrologic water year 
(HWY); for example, NDVI data beginning in September 2001 and ending in August 2002 
became the first HWY explored in this study and is referred to as the 2002 HWY NDVI dataset.   
 
Weather  
Weather data, specifically monthly minimum temperature (Tmin), monthly maximum temperature 
(Tmax), and monthly cumulative precipitation (Precip), were acquired from the NOAA National 
Centers for Environmental Information (NCEI)1 in netCDF format. These data were extracted 
for the years 2001-2019 and converted into raster TIF files, projected into the Albers Equal Area 
spatial reference system (WKID: 102039), and finally clipped to the study area polygon. The 
spatial resolution of these data was approximately 5-km (4,700-meter x 4,700 meter). 
 
Sample points 
To ensure only data describing conifer, grassland, and shrubland vegetation types were used in 
this study, 7,180 sample points were carefully digitized in ArcGIS Pro using the aerial imagery 
base map (Table 1). This time-consuming process was necessary to avoid sampling NDVI in 
developed areas (cities and agricultural areas). These sample points were used to extract NDVI, 
Tmin, Tmax, and Precip data from the underlying pixel values using the Extract Values to Table 
tool in ArcGIS Pro. All resulting tabular data were exported to Microsoft Excel and organized by 
HWY. 
 
Table 1. Distribution of sample points across vegetation types found in the study area 

Vegetation Type Sample Point 
Frequency Percent 

Coniferous forest 2,379 33% 
Grassland 1,380 36% 
Shrubland 2,616 19% 
Other   805 11% 

 
Derived Growing Degrees 
In addition to the data extracted by sample point, monthly growing degree fields (columns) were 
derived using corresponding Tmin and Tmax data. Typically growing degree is calculated using 
daily temperature data. However, since these data were not readily available across the study 
area, existing monthly temperature data was used to approximate cumulative growing degree and 
provide a relative comparison between years. Growing degree was calculated following: 

 
Where 2.8° C was used for Tbase. Cheatgrass (Bromus tectorum), a common invasive plant 
with a strong relationship to wildfire (D’Antonio and Vitousek 1992) germinates across a 

                                                 
1 URL = https://www.ncei.noaa.gov/data/nclimgrid/  

https://www.ncei.noaa.gov/data/nclimgrid/
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wide range of ambient temperatures with 2.8° C noted as one of the lowest germination 
temperatures yet with relatively high germination rates (Martens et al., 1994)  
 

Prior to creating any data visualizations or descriptive statistics these data were reviewed and all 
null data values were deleted. In addition, null identifiers (e.g., -1 for precipitation) were also 
deleted.  
 
Statistical analysis 
Vegetation productivity is a complex problem driven by numerous, interacting variables such as 
precipitation, temperature, soil fertility, solar radiation, topography, etc. This study used NDVI 
as an indicator of vegetation production and both precipitation and temperature (weather) as 
driver variables. No allusion is made suggesting the results of this study comprehensively 
describe vegetation productivity. Rather, the focus of this study was simply to better understand 
the influence of weather on biomass production. 
 
Using the assembled dataset described above, exploratory regression was run for each HWY.  
Exploratory regression is a data mining tool that evaluates all possible combinations of 
explanatory variables (i.e., monthly Tmin, Tmax, Precip., and Growing Degrees) to model 
vegetation productivity (i.e., peak NDVI). Exploratory regression results were used to inform an 
ordinary least squares (OLS) analysis. Four iterations of OLS were completed using data for the 
hydrologic water years 2002, 2005, 2012, and 2019. These years were selected and used in 
previous parts of this particular study due to the somewhat extreme and contrasting temperatures 
and/or precipitation occurring in those years. 
 
RESULTS AND DISCUSSION 
The results of numerous exploratory regressions (n = 18) produced a substantial amount of data. 
To condense and summarize these results, only those variables with significance > 98% were 
further examined (Figure 3). 

 
Figure 3. Summary of exploratory regression results for all 18 hydrologic water years examined in this study. 
Specific weather variables are shown in blue while more general temporal variables are shown in purple. The 
variables with the highest frequency of significance (monthly precipitation and any weather variables from 
December-February) were used to inform the ordinary least squares (OLS) analysis. 
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The explanatory variable having the highest frequency of significance was precipitation. This is 
reasonable as precipitation is the primary driver of vegetation production in arid and semiarid 
ecosystems (Thomas and Squires 1991; Miranda et al. 2011, Yan et al. 2015). It is interesting 
that the remaining weather variables did not have a higher frequency of significance but when 
combined and summarized temporally, the weather variables for December, January, and 
February revealed a high frequency of significance in predicting maximum NDVI through the 
peak of the growing season. This latter observation needs additional research but suggests the 
trajectory of a growing season may be set relatively early. That is not to say that an extreme 
drought will in early summer will not affect plant growth but that biomass production appears to 
be highly dependent upon winter and early spring precipitation. 
 
Ordinary Least Squares 
The results of explanatory regression were used to select input variables for ordinary least 
squares (OLS) analysis. OLS effectively calculates a multiple linear regression using the 
provided explanatory or driver variables (X-axis) to predict the dependent variable (Y-axis) 
(Figure 4). The results of this analysis show that while these data follow a normal distribution, 
they also exhibit a high degree of redundancy and spatial autocorrelation. The latter should be 
expected in accordance with Tobler’s first law of geography (Tobler 1970). A problem with this 
analysis is it assumes a linear relationship between the driver variables and response variable 
exists. Realistically, this may not be the case and a better suited statistical analysis may be 
required to understand and model the relationship between weather and vegetation productivity 
throughout the growing season. Furthermore, an analysis subset by vegetation type and 
ecological region may also improve model results. While the results of OLS analysis were not 
significant, it is of interest to note the clear spatial clustering shown in figure 4.    
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Figure 4.Results of OLS spatial analyses for years (a) 2002, (b) 2005, (c) 2012, and (d) 2019.  The spatial 
clustering of these data merits additional research. 

CONCLUSIONS 
This study sought to explore and model vegetation productivity across the western United States 
using temperature, growing degrees, and precipitation. The results of this study demonstrate the 
importance of precipitation as a primary driver variable and suggest weather events early in the 
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hydrologic water year (i.e., December through February) may be more important than previously 
thought. 
 
Furthermore, the results of this study indicate the relationship between vegetation production and 
any single weather variable (e.g., maximum temperature) is not linear. While the general 
outcomes of this study are promising, none of the results were found to be statistically 
significant. Additional research using non-parametric and non-linear modeling is necessary to 
better understand the interaction between weather variables (driver variables) and vegetation 
productivity. This course of research is particularly important to characterize and understand 
wildfire fuels. 
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