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ABSTRACT 
Wildfire management is an issue of safety for the entire western United States and understanding 
how weather and climate affects vegetation production (fuel) is an important component of both 
forecasting and management of fire. In this study we sought to better understand temporal fluxes 
in plant production across the western United States relative to wildfire. The LANDFIRE 
Existing Vegetation Type (EVT) product was used to identify three dominant vegetation types in 
the study area (conifer, grassland, and shrubland) and the normalized difference vegetation index 
(NDVI) was used to estimate plant productivity within each vegetation type. A threshold NDVI 
value of 0.30 was used to indicate actively growing vegetation (AGV). The Palmer Drought 
Severity Index (PDSI) was treated as a composite of existing weather parameters and used to 
examine correlations between AGV and PDSI. ANOVA results indicate a difference in the 
percent of actively growing vegetation in the years 2002 and 2012. Results of regression 
analyses revealed a significant relationship between PDSI and AGV for all but two annual 
comparisons. While drought is frequently considered a driver of plant production, PDSI only 
explained a small part of the variability observed in the AGV dataset. To better visualize these 
results, maps were made of percent AGV for each vegetation type. These maps show the 
majority of the western United States exhibited a peak of only 20% actively growing vegetation 
between 2001 and 2019. This is likely due, at least in part, to our choice of 0.30 as the NDVI 
threshold for AGV indicating the NDVI threshold needs to be reviewed to develop a better 
indicator of AGV. 
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INTRODUCTION 
In order for a fire to burn, three criteria must be present: fuel, oxygen, and a source of ignition. 
Wildfire fuels include live and dead biomass that must be dry enough to burn. Weather is the key 
driving factor influencing fuel moisture. Different vegetation types respond differentially to 
weather and climate. For example, coniferous forests tend to exhibit a more static photosynthetic 
pattern throughout the year while higher inter-annual variability is observed in grassland 
ecosystems. Realizing the variable effect of weather and climate on vegetation production, a 
study was developed using LANDFIRE Existing Vegetation Type (EVT) data, MODIS 
composite NDVI data, and Palmer Drought Severity Index (PDSI) data to better understand 
temporal fluxes in plant production across the western United States (Figure 1). 
 
The study area is a region covering approximately 3 million km2, including 11 states (Arizona, 
California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and 
Wyoming). The study area contains many different vegetation types and ecosystems including 
conifer, grassland, shrubland, sparsely vegetated, hardwood, and riparian areas. However the 
conifer, grassland, and shrubland vegetation types make up 78% of the study area (Figure 2). 
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Conifer and shrubland ecosystems consist of a wide variety of species depending on latitude, 
elevation, and precipitation. Conifer ecosystems can be dominated by one species or a mix of 
several species. For example, the conifer vegetation type (VT) in Wyoming is predominantly 
Lodge Pole Pine (Pinus contorta), while the same VT in the Cascades is a mix of Fir (Abies 
spp.), Douglas fir (Pseudotsuga menziesii), Arborvitae (Thuja spp.), and Pine (Pinus spp.). The 
shrubland VT in Idaho is mostly Sagebrush (Artemisia tridentata) and Rabbit brush (Ericameria 
spp.), while California’s chaparral shrublands consists of chamise (Adenostoma fasciculatum), 
several variety of Oaks (Quercus spp.), Manzanita (Arctostaphylos spp.), Sagebrush (Artemisia 
californica), Buckbrush (Ceanothus megacarpus), and Sumacs (Rhus spp.). The diversity of 
species communities in our VT classifications and the large size of the NOAA Climate Divisions 
presents a challenge to characterize these data statistically.    
 
In this study we set out to determine the relationship between drought (PDSI data) and the timing 
and extent of vegetative biomass production across the western United States, using three 
vegetation type classifications: conifer, grassland, and shrubland. Understanding how drought 
effects plant production will be important for future studies on the effect of weather and climate 
on wildfire fuels.  

 
Figure 1. The study area is a region including 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, 
New Mexico, Oregon, Utah, Washington and Wyoming). A substantial number of wildfires in the conterminous 
United States occur in this region.  
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METHODS 
The LANDFIRE program produces nearly two dozen geospatial data products derived 
principally from the Landsat sensor, and thus each data product has a 30-meter x 30-meter spatial 
resolution.  The LANDFIRE Existing Vegetation Type (EVT) product maps assimilated 
complexes of plant communities following the NatureServe terrestrial ecological system 
classification (Comer et al. 2003). Using the current, 2016 EVT layer, six discrete raster layers 
were created for the western U.S. study area; conifer, grassland, shrubland, hardwood, riparian, 
and sparsely vegetated.  Each Boolean layer contained pixels with a value of one (1, true) where 
that pixel represents an area containing the specific vegetation type (e.g., shrubland) and a value 
of zero (0, false) for all other pixels.   

  
 
Figure 2 Percent cover by vegetation type for the study area. Conifer, grassland, and shrubland make up 78% of the 
land cover. 

MODIS composite NDVI data were used to estimate vegetation production across the study area.  
This dataset library contained 23 composite NDVI images annually (2001-2019) and has a 250-
meter x 250-meter spatial resolution.  The ArcGIS Raster Calculator was used to identify those 
pixels describing healthy, actively growing vegetation (i.e., pixels with NDVI values > 0.30). All 
pixels that satisfied this criterion were assigned a value of one (1, true). The resulting layers were 
henceforth referred to as Actively Growing Vegetation (AGV) to distinguish these data from the 
original NDVI source data. The specific NDVI value (> 0.30) was chosen based on observations 
described by Myneni (1995) and Al-doski (2013). Together, these 23 data layers characterize the 
spatio-temporal extent or the “green wave” and allow for the visualization of the growing season 
throughout each year.  
 
The Palmer Drought Severity Index (PDSI) was used to describe drought conditions across the 
study area (NOAA 2021). Tabular PDSI data were joined to NOAA Climate Division polygons 
(n = 84) (Figure 3) and used to map drought severity across hydrologic water years (HWY). The 
HWY is a 12-month period beginning October 1st on a given year and ending September 30th of 
the following year. Thus, the HWY ending September 30, 2019 is referred to as the “2019 
hydrologic water year”. The temporal resolution of these PDSI data is monthly.  Thus, to 
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facilitate comparison with AGV data --having a 16-day temporal resolution-- the AGV data 
representing vegetation conditions latest in each given month was selected for use in this study. 
As a result, the number of annual AGV layers was reduced from 23 to 12. 

Each Boolean Vegetation Type (VT) layer (e.g., shrubland) (n = 6) was multiplied by each 
Boolean AGV layer (n = 12) resulting in 72 discrete AGVxVT layers annually (n = 1,296 layers 
in total for the 18 year study period). The raster attribute tables were exported to Microsoft Excel 
spreadsheets where each column provided AGV data (0 or 1) for a given month in the HWY. 
 
To examine the correlations that might exist between AGV (or AGVxVT) and PDSI, the Zonal 
Statistics as Table tool was used to extract AGV data within each climate division polygon. This 
resulted in a table with 84 records (one for each climate division polygon) and attributes 
describing the frequency of AGV pixels within each polygon as well as the sum, mean, and 
median statistics. These data were similarly organized following HWY. The climatic zone/AGV 
layers were further subset using the EVT layers. The resulting data for both PDSI and AGV were 
weighted by the area of the corresponding climatic zone and normalized to facilitate meaningful 
comparisons. Excel spreadsheets were similarly created from these data containing monthly 
HWY values (n = 12 columns). Each spreadsheet contained 1,008 data values (12 monthly value 
column for each of 84 climatic division rows). 
 

 
Figure 3. NOAA Western Climate Divisions used throughout this study (n = 84). 
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Analysis of Variance (ANOVA) tests were used to compare annual growing season data (the 
percent area considered to have actively growing vegetation) across time (2002-2019 HWY). 
Matrices of all ANOVA results were compiled and are summarized below.  Regression analyses 
were used to determine the relationship between AGVxVT data and PDSI.  These results are also 
summarized below.  
 
RESULTS AND DISCUSSION 
Results of ANOVA testing indicated a difference in percent AGV for the years 2002 and 2012 in 
both the grassland and shrubland vegetation types (Table 1).  In contrast, vegetation types with 
closed canopies (e.g., conifer and hardwood) or sparse vegetation showed no difference in AGV 
between years. This is understandable as a coniferous forest canopy tends to show much less 
change over time and masks most changes that may have occurred in the understory. Lastly, 
sparse vegetation areas do not have enough vegetation present to reliably detect change in AGV 
over time as each pixel is typically dominated by bare soil or rock.  
 
Table 1. Summary table of P-values comparing actively growing vegetation trends for grassland (first value) and 
shrubland (second value) across the western United States between 2001 and 2019. Results with significant values 
(C.I. = 0.05) are highlighted in yellow. Those years where no P-value was considered significant (i.e., P > 0.05) 
were excluded from the table. 

YEAR 2001 2002 2003 2005 2008 2012 

2005 0.26/0.02 0.03/0.00 0.17/0.02  0.25/0.04 0.01/0.00 
2008 0.93/0.93 0.34/0.16 0.82/0.77 0.25/0.04  0.20/0.41 
2010 0.26/0.16 0.04/0.01 0.17/0.13 0.93/0.44 0.24/0.20 0.02/0.04 
2011 0.81/0.25 0.20/0.02 0.59/0.21 0.40/.030 0.76/0.32 0.11/0.08 
2012 0.14/0.45 0.62/0.50 0.30/0.62 0.01/0.00 0.20/0.41  
2014 0.20/0.13 0.02/0.00 0.13/0.10 0.87/0.31 0.19/0.18 0.01/0.02 
2015 0.10/0.04 0.01/0.00 0.06/0.03 0.59/0.67 0.10/0.06 0.00/0.01 
2016 0.13/0.08 0.01/0.00 0.08/0.06 0.70/0.69 0.13/0.10 0.01/0.01 
2017 0.21/0.06 0.02/0.00 0.13/0.05 0.85/0.87 0.19/0.08 0.01/0.01 
2018 0.32/0.23 0.04/0.02 0.21/0.18 0.94/0.30 0.30/0.29 0.02/0.06 
2019 0.08/0.03 0.01/0.00 0.05/0.02 0.44/0.87 0.07/0.04 0.00/0.01 

 
Based upon these results, maps were made of mean PDSI for the years 2002 and 2012, along 
with two additional years (2007 and 2019) for comparison and data visualization purposes 
(Figure 4). The year 2019 was specifically chosen as it had above average precipitation across 
much of the study area as can be seen in the PDSI map (Figure 4d). 
 
AGV data for each of the four years (2002, 2007, 2012, and 2019) were graphed to facilitate 
visualization of the growing season over time (Figure 5).  The height or amplitude of each 
growing season curve indicates the percent area considered to exhibit actively growing 
vegetation.  The width of each curve describes the period between the onset of the green wave 
and the later senescence of plant productivity.  In effect, this illustrates the duration of the 
growing season across each year. It is interesting to note the two years found to be consistently 
different in the ANOVA test results (2002 and 2012) also exhibited the lowest amplitude in the 
AGV curves shown in Figure 5. 
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Figure 4. Mean Palmer Drought Severity Index (PDSI) for the years 2002 (a), 2007 (b), 2012 (c), and 2019 (d). 
Years 2002 and 2012 exhibited very low biomass production as suggested by NDVI and Actively Growing 
Vegetation (AGV) data.  In contrast, 2007 and 2019 AGV data suggested much higher biomass production. Figure 
3a shows widespread drought (2002). Figure 3c also depicts drought conditions in 2012 but not as severe or 
widespread as seen in 2002. Figure 3b (2007) shows drought in the southwest but much less severe conditions 
across the rest of the study area. Figure 3d (2019) was an exceptionally wet year overall. 

 



7 
 

 
Figure 5. Percent of the study area exhibiting actively growing vegetation (AGV) across a calendar year.  Years 
2002 and 2012 never achieved the overall productivity seen in 2007 and 2019 based upon the height or amplitude of 
each curve.  However, the length of the growing season appears approximately the same based upon the width of 
each curve. 

These data were also used to map the percent of actively growing vegetation by vegetation type 
(AGVxVT) within each climatic zone for the months of March, April, and May. Peak biomass 
production was typically seen in the May datasets used in this study (note: June is commonly 
cited as the month of peak biomass production but since we selected the later MODIS  
NDVI/AGV date in each month, June values frequently exhibited a decline in productivity). The 
months of March and April were also selected as they showed the steepest or most rapid increase 
in AGV each year (Figure 5). The conifer vegetation type showed the highest percent activity 
for all months and all years (Figures 6), while the grassland (Figure 7) and shrubland (Figure 8) 
vegetation types showed very little activity overall. This result inspired further research that 
indicated the NDVI threshold value of 0.30 may not be a good threshold value in non-forested 
vegetation types. Paruelo and Lauenroth (1995) showed shrublands and grasslands exhibit 
significantly different NDVI curves during active growth. The results of their study reveal most 
shrublands do not reach an NDVI value of 0.30 even during the peak of their growing season 
(Figure 9). The maps of percent AGV (Figures 6-8) show the majority of the study area for all 
three vegetation types contains only 0-20% actively growing vegetation when using the NDVI 
threshold value of 0.30. 
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Figure 6. Percent of AGV in 2002 for conifer during the months of March (a), April (b), and May (c). Polygons 
follow NOAA Climate Divisions. 
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Figure 7. Percent of AGV in 2002 for grasslands during the months of March (a), April (b), and May (c). Polygons 
follow NOAA Climate Divisions. 



10 
 

 
Figure 8 Percent of AGV in 2002 for shrubland during the months of March (a), April (b), and May (c). Polygons 
follow NOAA Climate Divisions. 
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Figure 9. Paruelo and Lauenroth (1995) reported the seasonal course of NDVI in grassland (left) and shrubland 
(right) vegetation types. Each curve is an average of the study sites corresponding to this type. Grassland vegetation 
types: NMG = Northern mixed-grass prairie, SG = Shortgrass steppe, BG = Bunchgrass steppe, TG = Tallgrass 
prairie, SMG = Southern mixed-grass prairie. Shrubland vegetation types: SGST = Sagebrush steppe, GTST = 
Gramma-tobosa shrubsteppe, PJWJ = Pinyon-Juniper woodlands, GBST = Great Basin sagebrush steppe. The 
values for shrublands show that an NDVI value of 0.30 may be too high to properly detect AGV and suggest a 
threshold of 0.10 may be better. 
 
Results of regression analyses revealed a significant relationship between PDSI and AGV for all 
but two of the comparisons (Table 2). The two results that did not show a strong relationship 
were grasslands in 2007 (P = 0.43) and conifers in 2019 (P = 0.95). It is interesting that while a 
significant relationship was observed across most of these comparisons, the R2 values were quite 
low.  This indicates that while drought is considered a significant driver of vegetation 
production, its effect explains only a small portion of the variability observed in vegetation 
production. For example, only 22% of the variability in vegetation production as indicated by 
AGV data can be explained or attributed to drought as indicated by PDSI data. We note that an 
exceptionally large sample size almost always shows a significant difference in statistical tests 
(Sullivan & Feinn 2012). According to Sullivan & Feinn (2012), if the sample size were large 
enough only a difference of zero would be non-significant. With a sample of 1008, our study had 
a sample size that merits careful interpretation and when coupled with the extremely low R2 

values, suggests the relationship between the Palmer Drought Severity Index and Actively 
Growing Vegetation data is quite small.  
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Table 2. Regression analysis between AGV and PDSI data. All were significant save for grassland in 2007 and 
conifer in 2019. Total observations for each record (n=1,008).  

Hydrologic 
Water Year 

Vegetation 
Type 

R2 P-value 

2002 Conifer 0.33 0.00 
2002 Grassland 0.16 0.00 
2002 Shrubland 0.22 0.00 
2007 Conifer 0.31 0.00 
2007 Grassland 0.00 0.43 
2007 Shrubland 0.08 0.00 
2012 Conifer  0.07 0.00 
2012 Grassland 0.11 0.00 
2012 Shrubland 0.15 0.00 
2019 Conifer 0.00 0.95 
2019 Grassland 0.22 0.00 
2019 Shrubland 0.06 0.00 

 
CONCLUSIONS 
The hydrologic water years of 2002 and 2012 were shown to be less productive growing seasons 
(Figure 10) relative to 2007 and 2019. While a significant relationship was observed between 
drought (PDSI) and actively growing vegetation (AGV) (Table 2), one can conclude the 
differences are due only in small measure to drought. PDSI explains only a small portion of the 
variability seen in AGV data as suggested by the overall low R2 values. The small P-values 
indicate a significant relationship, but this is influenced by the large sample size used in this 
study (n=1008). Effect size may be a more accurate way to describe these data and P-values in 
this case do not give an accurate representation of ecosystem dynamics.  Several additional 
factors could have contributed to these results as the response of vegetation to drought is 
controlled by landscape level factors such as soil water movement and retention, groundwater 
interactions, evaporation, plant community composition, and the ability of particular species to 
handle stress (Cartwright et al. 2020).  

The maps of percent AGV show little variation across the study area for grassland (Figure 7) 
and shrubland (Figure 8) vegetation types. This is likely due to our initial choice to use an NDVI 
threshold value of 0.30 which, in hindsight, may not capture actively growing vegetation 
accurately in these ecosystems. Additional research is needed to determine the proper NDVI 
threshold value to characterize actively growing vegetation. 
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Figure 10 Percent area of AGV for conifer (a), grassland (b), and shrubland (c) for the years of 2002, 2007, 2012, 
and 2019. 

The shrubland vegetation type exhibited the most sensitivity to drought. This concurs well with a 
study by Cartwright et al. (2020) who found drought sensitivity was generally greater in shrub-
steppe areas than in forests. This is perhaps best visualized in 2019, where wetter than normal 
conditions existed across the study area (Figure 10) resulting in a substantial rise in AGV for 
shrublands. The response of shrublands to drought could be due to the heterogeneous 
composition of shrubland where understory grasses exist alongside various woody shrubs and 
occasional tree species (e.g., Juniper). In addition, shrubland ecosystems typically exhibit a 
substantial bare ground component resulting in a more “mixed pixel” composition relative to 
forested ecosystems.  
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In this study we set out to determine the relationship of the PDSI drought data to the timing and 
extent of vegetation production across the western United States. Understanding how drought 
effects plant production will be important for our future studies on the effect of weather and 
climate on wildfire fuel production. Vegetation production and vegetation characteristics drive 
wildfire fuel load and fuel continuity. All wildfire fuels are ultimately derived from vegetation 
and are typically classified into four groups: grasses, brush, timber, and slash (Anderson 1982). 
Knowing vegetation productivity and potential in a given year is important to understanding 
wildfire behavior.   
 
This study found vegetation production can vary significantly between years.  Furthermore, 
while significant, vegetation response to drought indicated by the Palmer Drought Severity Index 
(PDSI) has little direct effect on percent actively growing vegetation. Future research will focus 
on more direct weather factors, such as precipitation and temperature, as well as the development 
of a reliable NDVI threshold indicator of actively growing vegetation. 
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