
Selecting and Using 
TeraGrid/XD Resources 
for Maximum Productivity 
with Hands-On Examples

Kim DillmanKim Dillman

Research Programmer

Purdue Campus Champion

Rosen Center for Advanced Computing

Purdue University

July 18, 2011



Introduction and Overview

•A Few Things to Know…

•Becoming Familiar with Your Project’s Job 
and Data Requirements

•Understanding What’s Available and How to 
Choose

•Examples of User/Resource Matching •Examples of User/Resource Matching 
Scenarios

•Getting on the Machine

•Understanding Queues and Policies

•Getting the Best Performance

• Let’s try an example…



A Few Things to Know…A Few Things to Know…



Assumptions for this Session

•You already know the basics of what 
TeraGrid/XSEDE is

•You have attended or understand the basic 
concepts presented in the “TeraGrid New 
User Training”

•You either have an existing allocation or •You either have an existing allocation or 
have users or your own projects that may 
benefit from obtaining an allocation (if you 
want to try running an example you can 
either use your own allocation or a 
temporary training account)



A Few Comments Before We Start

• TeraGrid is in the process of transitioning to a 
new program called XSEDE

• This tutorial was created primarily using the 
resources available under the TeraGrid program 
and site

• A few comments will be included at various • A few comments will be included at various 
times during this tutorial with reference to the 
newer XSEDE program

• This tutorial and documentation will be 
upgraded to include the newer XSEDE web 
pages, links, and tools at a later date when they 
are made available on the XSEDE program site.



Becoming Familiar with 
Your Project’s Job and Your Project’s Job and 
Data Requirements



Ask Some Questions About…(1)

•What software do you need?
– Is it 3rd party

– Does it require a license?

– Is it open source or “free”?

– Is it already installed on a TeraGrid system?

• https://www.teragrid.org/web/user-support/software_search

– Can you install it yourself or will you need assistance?– Can you install it yourself or will you need assistance?

– Does your primary code have other software dependencies?

– Do you have access to the source to recompile it?

– Are there benchmarks already available for it on TeraGrid 
systems?

• https://www.teragrid.org/web/user-support/benchmark

– How much disk space does it take to install it (if not already 
available on a TeraGrid system)?



Ask Some Questions About…(2)

•How does your software/code function?
– Do you need to run benchmarks to determine performance 

and best resource choice?

– Is it serial or parallel?

– How well does is scale (maximum number of CPUs/nodes 
before performance degrades)?

– Does the code produce substantial network traffic (affects – Does the code produce substantial network traffic (affects 
choice of node interconnect technology)?

– Does it have specific hardware architecture 
requirements?(i.e. only Intel 64, Cray, SGI, etc.)?

– Does it have specific OS requirements (i.e. RedHat or SuSE
Linux, Windows, etc.)?

– Does it require a “shared memory” architecture (i.e. SGI 
Altix, UltraViolet, etc.)?



Ask Some Questions About…(3)

•What are some characteristics of your 
particular jobs?
– How long will your jobs run (min/max/average)?

– How many total job runs will you need to make?

– How much memory per processor or node does it need?

– How much disk space does each job required for input and 
output (node local or system shared)?output (node local or system shared)?

– How much total disk space do you need to complete your 
project?

– Do you need to archive your data output to another 
system/storage area?

– How long (time) does your job output need to reside on the 
system where it was created (i.e. for further 
processing, input to other runs, etc.)?



Ask Some Questions About…(4)

•Does the research require “special” 
systems?
– Does it need any special hardware such as GPUs?

•Would it be a good candidate for the Purdue 
Condor Pool?
– Serial jobs?– Serial jobs?

– Large number of serial jobs?

– Workflow management?

– Short job duration (under 2 hours)

– Access to the source code for recompile by “condor_submit” 
for longer job runs (note exceptions in the Condor Appendix 
of this document)

– Other… (see Condor Appendix)



Ask Some Questions About…(5)

•Would it be a good candidate for the Open 
Science Grid (OSG)?
– Some of the same requirements as the Purdue Condor Pool

• Serial jobs / workflow / job submission script is almost identical

– Additional possible requirements for OSG (HTPC – High 
Throughput Parallel Computing)

• Ensembles of Single node (up to 16 core) parallel jobs using • Ensembles of Single node (up to 16 core) parallel jobs using 
MPI, OpenMP, Linda, etc

– Different methods of data access for the above job types

• Scratch, Shared (Apps and Data), High Capacity Distributed File 
System (local and WAN), 

• Access through local filesystem (fuse) and Grid protocols 
(GridFTP, SRM)

• Different Solutions: Xrootd, Hadoop, etc.

– Other… (see OSG Appendix for more details)



Understanding What’s 
Available and How to Available and How to 

Choose



Becoming familiar with the 
resources

•What types of resources are available?
– Resource categories

– Pre-production / Production

– Resource specifics

•Where do I find general info?
– The resource catalog link:– The resource catalog link:

– https://www.teragrid.org/web/user-support/resources

•Where do I find specific info?
– Individual resource “User Guides” (click on the icon next to 

the resource in the resource catalog)

– XSEDE with also have User Guides in a common format in the 
new User Portal



TeraGrid Resource Categories

•Compute

•Special

•Visualization

•Future (New) Systems

•Other•Other

•Data

•Advanced Support for TeraGrid 
Applications - ASTA (will have a new 
name in XSEDE)



Available “compute” Resources

• Compute/Visualization Resource catalog:

– https://www.teragrid.org/web/user-support/compute_resources

• There are 3 major types of “compute” resources 
currently available to TeraGrid users:

– SMP

• Symmetric MultiProcessing) A multiprocessing architecture in which 
multiple CPUs, residing in one cabinet, share the same memory. multiple CPUs, residing in one cabinet, share the same memory. 
SMP systems provide scalability.

– MPP (Massively Parallel Processors)

• A multiprocessing architecture that uses up to thousands of 
processors. MPP systems use a different programming paradigm 
than the more common symmetric multiprocessing (SMP) systems 
used.

– Cluster



Available SMP Systems

• NCSA – Ember:

– SGI UltraViolet system

– 4 UV 1000 systems with 384 cores (Intel Nehalem EX 6 core 
processors) and 2 TB of memory each

– Primarily for moderate to large shared memory applications

• PSC – Blacklight:

– SGI UltraViolet system– SGI UltraViolet system

– UV 1000 system with 4094 cores (Intel Nehalem 8 core processors) 
and  32 TB of memory

– Primarily for large shared memory applications



Available MPP Systems

• NICS – Kraken:

– Cray XT5 – 112,896 processors

– Intended for highly scalable applications

– Minimum Startup allocation request is 100,000 SUs(?)

– Find out if users are really going to use this system before adding 
them or requesting a startup allocation

• TACC – Ranger:• TACC – Ranger:

– Sun Constellation – 62,976 processors

– Intended for codes scalable to thousands of cores



Available Cluster Systems

• Purdue – Steele:

– Dell PowerEdge 1950 – 7,144 processors (1560 are available in the 
longest running production queue)

– Suited for a wide range of serial and small/medium parallel jobs

– Longest Wall Time (720 hours)

– Primarily 16 GB memory nodes and 1 GigE Ethernet interconnect

– Access for up to 4 hours to some nodes with 32 GB memory and SDR – Access for up to 4 hours to some nodes with 32 GB memory and SDR 
Infiniband interconntect

• TACC – Lonestar4:

– Dell PowerEdge Westmere – 22,656 cores (2 6-core processers per 
node)

– 24 GB memory per node (2 GB per core)

– Intended primarily for applications scalable up to thousands of cores

– Can run serials jobs in a special queue



Special Resources

• NCSA – Lincoln:

– Dell PowerEdge 1950 / NVIDIA Tesla S1070

– Intended for applications that can make use of heterogeneous 
processors (CPU and GPU)

• Purdue – Condor (high throughput)

– Pool of over 27,000+ processors

– Various Architectures and OS– Various Architectures and OS

– Designed for high-throughput computing and is excellent for 
parameter sweeps, Monte Carlo simulations, and other serial 
applications

– See Condor Appendix A for more details.

• IU – Quarry:

– Used for web services hosting and Science Gateways



Special Resources (cont.)

• SDSC – Dash:
– Intel Nehalem – 512 processors

– Primarily used for data intensive computing

– vSMP (virtual shared memory) software from ScaleMP that 
aggregates memory across 16 nodes. This allows applications to 
address 768GB of memory.

– 4 TB of Flash memory configurable as fast file I/O subsystem or 
extended fast virtual memory swap space.extended fast virtual memory swap space.

• SDSC – Trestles:
– 10,368 cores (4 8-core AMD Magny-Cours processors per node)

– 20 TB DRAM (64 GB per node / 2 GB per core)

– 38 TB SSD Flash Memory (120 GB per node)

– QDR Infiniband interconnect

– Intended for moderately scalable parallel applications and fast local 
I/O requirements



Visualization Resources

• TACC – Longhorn:

– Dell/NVIDIA Visualization and Data Analysis Cluster

– A hybrid CPU/GPU system designed for remote, interactive 
visualization and data analysis, but it also supports production, 
compute-intensive calculations on both the CPUs and GPUs via off-
hour queues

• TACC – Spur:• TACC – Spur:

– Sun Visualization Cluster

– 128 compute cores / 32 NVIDIA FX5600 GPUs

– Spur is intended for serial and parallel visualization applications that 
take advantage of large per-node memory, multiple computing cores, 
and multiple graphics processors.



Visualization Resources (cont.)

• NICS – Nautilus:

– Primarily used for three tasks

– Visualizing data results from computer simulations with many 
complex variables

– Analyzing large amounts of data coming from experimental facilities

– Aggregating and interpreting input from a large number of sensors 
distributed over a wide geographic regiondistributed over a wide geographic region

– SGI UltraViolet

– 1024 cores (Intel Nehalem)

– 4 TB global shared memory



New Systems (Coming Soon)

• NCSA – Forge
– Dell PowerEdge C6145 Quad Socket nodes (dual 8-core AMD Magny-
Cour processors)

– Each node supports 8 NVIDIA Fermi N2070 GPUs

– Intended for applications that make use of GPGPUs

• SDSC – Gordon
– Consists of a “compute cluster” and separate I/O nodes

– 1024 dual socket compute nodes, 64 I/O nodes– 1024 dual socket compute nodes, 64 I/O nodes

– Dual rail, QDR Infiniband, 3D torus interconnect

– Designed for data intensive computer that spans domains such as 
genomics, graph problems, geophysics, and data mining.

– Large memory super-nodes are ideal for serial or threaded 
applications that require a large amount of memory

– Flash based I/O may provide significant performance increases for 
certain applications



Other Systems

• FutureGrid: A grid testbed (IndianaU and many 
other partners)
– A collections of different systems

– Not currently allocated via standard TeraGrid POPS allocation 
system(?)

– More info:
• http://futuregrid.org/

• MATLAB on the TeraGrid (NO LONGER AVAILABLE?)• MATLAB on the TeraGrid (NO LONGER AVAILABLE?)
– Update: The request access link indicates that this system is no 
longer available for requests

– Newer system from Cornell

– Not currently allocated via standard TeraGrid POPS allocation system

– More info:
• http://www.cac.cornell.edu/matlab/

– How to request access:
• http://www.cac.cornell.edu/matlab/status/interest.aspx



OSG as an XSEDE Provider

and More …and More …



OSG as an XSEDE Provider

• Currently a work in progress

– Access to OSG resources via XSEDE Gateways

– Will eventually be seamless

– Including access from OSG interfaces to XSEDE

• OSG brings additional capabilities to your campus:• OSG brings additional capabilities to your campus:

– Create your own Campus Grid by federating local clusters

– Single submit model to local campus resources and the OSG, and 
XSEDE

• First, lets talk about the unique capabilities of the OSG 



The two familiar Models 

• Capability Computing (HPC)

– A few jobs parallelized over the whole system

– Use whatever parallel s/w versions the sysadmin has installed

• (MPI, OpenMP, Linda …)

• High Throughput Computing (HTC)

– Run ensembles of single core jobs

– The OSG is focused on serving HTC users– The OSG is focused on serving HTC users

HTC is also what Campus Grids are about



• HTPC – High Throughput Parallel Computing
(A hybrid model on the OSG)

Ensembles of small-
way parallel jobs 
(single node, shared 
memory, up to 16 
cores)

(10’s – 1000’s of jobs)(10’s – 1000’s of jobs)

Use whatever parallel 
s/w (e.g. MPI, Linda) 
you want  ☺

(It ships with the job)



Making sense of the OSG

• OSG operates as a grid of distributed systems

– Currently 70+ sites (120+ Resources) 

– Users access the “submit host” but do not login to any of 
the resources

– Jobs are distributed across one or more resources

– Heterogeneity of the resources is transparent to the user – Heterogeneity of the resources is transparent to the user 
(by design)

– There are no “allocations” on the OSG

• Resources are optimistic

• OSG = Technology + Process + Sociology



The OSG is like eBay 

VO’s
Job Submission 

Points

(Demand)
Match Making

Accounting Monitoring

Integration
& Testing

SoftwareP
ackaging

Ticketing

Servers &

Storage

Coordination

Resource

Providers

(Supply)

Client

Stack

Engage
Support

Server

Stack

Servers &

Storage

Servers &

Storage

Security

Proposal
Anchoring …

3rd pty services



The OSG Now

http://display.grid.iu.edu/

31



Now > 10M hours / week



Science on the OSG Today

• Astrophysics

• Biochemistry

• Bioinformatics 

• Earthquake Engineering

• Genetics

• Gravitational-wave physics 

• Mathematics

• Nanotechnology

• Nuclear and particle physics

• Text mining

• And more…



OSG Enabling a Campus Grid: All 
Resources Can be Accessed Via a 

Single Interface

PBS

LSF

Campus

Factory Campus

Factory

OSG Cloud

Local Cluster

Submit Host
(Condor)

Condor

Local User Credential

XSEDE

(HTC resources)



Campus Grids

• Can be easily set up on your campus

• Gives access to local resources (federated) through a single 
interface

• Also can submit through the same interface to OSG and 
XSEDE (HTC) resources



Submit File for OSG (Campus Grid)
Universe = vanilla

#notify_user = <user email address>

Executable = serial64ff

#transfer_executable = false

# Files (and directory) in the submit host: log, stdout, stderr, stdin, other files

InitialDir = run_1

Log = serial64ff.log

Output = serial64ff.stdout

Error = serial64ff.stderr

#input = serial64.in#input = serial64.in

fetch_files=serial64ff.in

#Arguments = <arg1><arg2><argn>

should_transfer_files = IF_NEEDED

when_to_transfer_output = ON_EXIT

# Required for access to XSEDE resources

+TGProject = "TG-XXXNNNNNNN”

# Required for access to OSG resources via (GlideinWMS)

requirements = IS_GLIDEIN == True

x509userproxy=/tmp/x509up_u20003

Queue



Available “data” resources in OSG
(Data is the tricky part)

• Local file system
– Well defined “scratch” space

– Available during the execution of the job

• Shared file system
– Opportunistic use

– Well defined areas for applications and data (OSG_APP, OSG_DATA)

– Performance varies (GPFS, Lustre, NFS)– Performance varies (GPFS, Lustre, NFS)

• High capacity Distributed File System (local and WAN)
– Access through local file system (fuse) and Grid protocols (GridFTP, 
SRM)

– Different solutions: Xrootd, Hadoop, …

• TeraGrid Data Replication Service (Access to 
– Access through iRODS command line and other compatible clients



Submit to Run

• No difference from regular Condor job submission

• All Condor data movement mechanisms work as well

• condor_submit <submit_file>



OSG Summary

• Make sure your application is suited to the “high throughput 
computing” paradigm

• OSG usage is “opportunistic” 
– No allocations necessary

• OSG also brings the ability to federate resources on your 
own campus

• XSEDE Gateway access to the OSG is a work in progress.• XSEDE Gateway access to the OSG is a work in progress.
– Should eventually be transparent

• Data is tricky – work with the experts

For questions of more information, contact:

Marco Mambelli

marco@hep.uchicago.edu



Available “data” Resources

• Data Resource Catalog:

– https://www.teragrid.org/web/user-support/data_resources

• Archive systems

– Use tapes for long-term storage

– Very high capacity (petabytes or tens of petabytes)

• Wide-Area and Global file systems

– Extension of parallel file systems over wide-area networks– Extension of parallel file systems over wide-area networks

– One file system, available on multiple sites/resources

• Data Replication Service

– A distributed replication and data management service, utilizing 
archive and disk systems at mulitple sites (see Access). All data is 
replicated across two separate storage systems.



Check out the available resource 
specifications (1)

•Compute and Visualization List:
– https://www.teragrid.org/web/user-support/compute_resources

User 

Guide



Check out the available resource 
specifications (2)

•Compute and Visualization Compare:
– https://www.teragrid.org/web/user-support/compare_compute

Select 
Resource

Select 
Parameter



Check out the available resource 
specifications (3)

•Compute and Visualization Search:
– https://www.teragrid.org/web/user-support/resource_search

Select 
Parameters



Check out the available resource 
specifications (4)

• Local Data Storage List:
– https://www.teragrid.org/web/user-support/storage



Check out the available resource 
specifications (5)

•Data Resource List:
– https://www.teragrid.org/web/user-support/data_resources



Campus Champions Resource 
Selection Tool (coming soon)

• Resource Selection Spreadsheet - Summary:
– Currently under revision and will move to new location soon



Campus Champions Resource 
Selection Tool (coming soon)

• Resource Selection Spreadsheet – All Queues:
– Currently under revision and will move to new location soon



Campus Champions Resource 
Selection Tool (coming soon)

• Resource Selection Spreadsheet - MaxWall:
– Currently under revision and will move to new location soon

600

700

800

Compute Resource Max Wall Time
Longest Running Queue
(May not have access to all CPUs)

0

100

200

300

400

500

K
ra

k
e
n

R
a
n

g
e
r

A
b

e

L
o

n
e
s
ta

r

S
te

e
le

Q
u

e
e
n

 
B

e
e

L
in

c
o

ln

B
ig

 R
e
d

C
o

b
a
lt

F
ro

s
t

P
o

p
le

N
S

T
G

H
o
u
rs

Max Wall Time

* N/A



Check out the available software

•Software Search:
– https://www.teragrid.org/web/user-support/software_search

Select 
Criteria



Examples of 
User/Resource Matching User/Resource Matching 

Scenarios



User “A”

• Problem Description

• Code :

• Is open source

• Is parallel

• Is not currently installed anywhere on TeraGrid systems

• Does not scale too well across nodes

• Has several other code dependencies• Has several other code dependencies

• Job requirements are:

• Many runs (small parameter study)

• Somewhat memory intensive

• May run much longer than 48 hours

• Solution

• Steele and QueenBee for benchmarking (newer choice 
would be Lonestar or Trestles instead of QueenBee)



User “B”

• Problem Description
• Code :
• Is open source
• Is parallel
• Is currently installed on at least a few TeraGrid systems
• Scales fairly well if the node interconnect is fast
• Has benchmarks available for some of the TeraGrid systems 

(although not for specific module and usage scenario)

• Job requirements are:• Job requirements are:
• A few runs
• Rather large number of interations/time steps per job

• Benchmarks on specific problem were run with Campus 
Champions assistance
• Steele was too slow due to the interconnect technology
• Kraken was much better

• Solution
• Kraken was chosen for startup allocation request for 

production runs



User “C”

• Problem Description
• Code :
• Is custom

• Is serial

• Can be statically compiled into a single executable

• Can be compiled for different OS/Architecture combinations

• Job requirements are:
• A VERY large number of runs (over 500,000)• A VERY large number of runs (over 500,000)

• Each job runs in about an hour or two

• Jobs are similar except for the input file and some parameters

• Solution
• Condor was chosen due to the serial nature of the 

code, the large number of jobs to be run, the ability to 
compile the code into a single executable on multiple 
OS/Architecture combinations, and the relatively short 
execution time (This would also be suited for OSG)



User “D”

• Problem Description

• Code :

• Is custom

• Is serial

• Can be statically compiled into a single executable

• Job requirements are:

• Very few runs• Very few runs

• Runs between 24-48 hours

• Requires a very large amount of memory (>80 GB)

• Solution

• Cobalt and Pople were chosen since the code is serial but 
requires a large amount of “shared” memory (Newer 
choices would be Ember and Blacklight)



Getting on the MachineGetting on the Machine



Common methods to ALL TeraGrid 
systems

• Login to the TeraGrid User Portal
– Go to the User Portal

– Select the “Accounts” tab 

– Use the “login” link under the “Connect” column

•Download, setup and use the GSI-SSHTerm
Java ApplicationJava Application
– Download:

https://security.ncsa.illinois.edu/gsi-sshterm

– Step by Step Tutorial:

http://www.rcac.purdue.edu/teragrid/userinfo/tutorials/How
ToUseGSISSHApplet.pdf

•Globus Toolkit/MyProxy (UNIX/Mac)



TeraGrid User Portal Method



TeraGrid GSI-SSHTerm Application 
Method



Other methods (optional per 
resource)

• Local site password (where supported)
– NCSA (Lincoln, Ember)

– PSC (Blacklight)

– SDSC (Dash, Trestles)

– TACC (Ranger, Lonestar4, Longhorn, Spur)

•SSH Key Pairs (where supported)•SSH Key Pairs (where supported)
– Purdue (Steele, Condor)

•SecureID Card (FOB) and password
– NICS (Kraken, Nautilus)

•Common TeraGrid authentication only
– ?



Understanding Queues and 
PoliciesPolicies



What you should know about queues 
in general

• There are many different “job manager” 
systems in use on the TeraGrid resources
– PBS Pro, Torque, SGE, LoadLeveler, etc.

• Each resource can define the name and queue 
limits based on their own requirements
– No “standard” names to reflect queue usage models or policies

•Not all queues on a resource are necessarily 
available to TeraGrid usersavailable to TeraGrid users
– Ex. Steele currently has 54 queues, but only 4 are available to 

TeraGrid users – the rest are for local users or staff only

• Each Resource may required you to submit jobs 
to a queue in a different way
– Submit directly to the correct execution queue that meets your 

job’s specific requirements
– Submit to a “general” queue which routes your job to the 

correct execution queue that matches your job’s requirements



What you should know about queue 
commands

•There are commands to list what queues are 
defined
– Ex: PBS Pro

• qstat –Q

•There are commands to list the details of a 
specific queue:specific queue:
– Ex: PBS Pro

• qstat –Qf <queue_name>

•There are commands to list what jobs are in 
the queue
– Ex: PBS Pro

• qstat –a <queue_name>



What you should know about queue 
commands

•There are commands to list the status of all 
of your jobs currently in the system
– Ex: PBS Pro

• qstat –u <userid>

•There are commands to list the details of a 
specific job in the systemspecific job in the system
– Ex: PBS Pro

• qstat –f <job_id>

•Some systems have commands to show you 
when your job might start
– Ex: Moab

• showstart



What you should know about 
policies

• Job Manager software can implement “policies” 
that either LIMIT and/or PRIORITIZE jobs in the 
queue

• These “policies” can vary GREATLY between 
resources

• Limits may be applied to jobs in a queue or across 
all queues, for example:all queues, for example:
– Number of jobs queued or running per user

– Number of jobs queued or running per project allocation number

– Number of total nodes per user

• Priorities can be based on a variety of attributes 
including but not limited to:
– Wall time requested

– Number of CPUs requested

– Time already spent waiting in the queue

– Number of jobs previously run by the user



Getting the Best 
PerformancePerformance



Benchmarking

•Check out the AUS section to see if your 
code has been benchmarked on any of the 
current TeraGrid systems
– This does not guarantee that your jobs will perform in the 

same manner but it should help you determine what 
systems might be best to start running sample test jobs

– Set up your own test runs to provide benchmark results on 
these systems for you particular job setupthese systems for you particular job setup

– https://www.teragrid.org/web/user-support/aus_projects

•Set up your own benchmarks by planning a 
“matrix” of job runs varying the number of 
processors for either:
– A fixed wall time per job

– A specific number of “iterations” or time steps.



Benchmarking (AUS sample)



AUS/ASTA Support

•Request AUS ASTA support to help optimize 
your code
– Additional “resource” on startup or research allocation

– Can also be requested as a “supplemental” allocation 
request on an existing allocation

•Submit a ticket to the help desk for •Submit a ticket to the help desk for 
assistance with performance problems on a 
specific resource or to ask for 
recommendations on which resource(s) to 
use for best performance



Let’s Try an ExampleLet’s Try an Example



Example Details

•Basic C program to Integrate the function 
X**2

•There are serial and parallel versions

•There are 3 different code versions:

– Input from “stdin” and output to “stdout”

– Input/Output to files whose names are “hard-
coded” in the program

– Input/Output to files whose names are passed to 
the program on the command line



Example Downloads

•Condor

– https://springboard.hubzero.org/resources/32

•Steele

– https://springboard.hubzero.org/resources/30

• GSI-SSHTerm Tutorials
• http://www.rcac.purdue.edu/teragrid/userinfo/tuto

rials/HowToUseGSISSHApplet.pdf
• http://www.rcac.purdue.edu/teragrid/userinfo/tuto

rials/HowToCustomizeandSaveGSISSHApplet.pdf



Resource Quick Summary Chart



Resources and Host Names



Appendix A:
Condor Pool Resource Condor Pool Resource 

Specifics



Potential Indicators for Condor Pool 
Job Match

• Serial jobs

• Batch “non-interactive” mode only

• Short job duration (under 2 hours)

• Access to source code for “condor_compile” 
– if longer job durations are required

– See restriction sections for when you can’t use this

• Statically compiled executable

• Parametric studies or “monte carlo” type runs that could 
benefit from a workflow manager (aka DAGMAN)

• Jobs runs with dependencies (again, could benefit from a 
workflow manager)

• Does not have “large” data input or output files.

• Need access to multiple/different hardware/OS architectures 
(i.e. Linux/Windows, 32 bit/64 bit, intel/AMD/PowerPC)



Condor Compile Restrictions
Standard Universe (1)

• Taken from:
– http://www.cs.wisc.edu/condor/manual/v7.3/2_4Road_map_Running.html

• Limitations:
– Multi-process jobs are not allowed. This includes system calls such as 

fork(), exec(), and system().

– Interprocess communication is not allowed. This includes pipes, semaphores, and 
shared memory.

– Network communication must be brief. A job may make network connections using – Network communication must be brief. A job may make network connections using 
system calls such as socket(), but a network connection left open for long periods will 
delay checkpointing and migration.

– Sending or receiving the SIGUSR2 or SIGTSTP signals is not allowed. Condor reserves 
these signals for its own use. Sending or receiving all other signals is allowed.

– Alarms, timers, and sleeping are not allowed. This includes system calls such as 
alarm(), getitimer(), and sleep().

– Multiple kernel-level threads are not allowed. However, multiple user-level threads are
allowed.



Condor Compile Restrictions 
Standard Universe (2)

• Limitations (cont):
– Memory mapped files are not allowed. This includes system calls such as mmap() and 
munmap().

– File locks are allowed, but not retained between checkpoints.

– All files must be opened read-only or write-only. A file opened for both 
reading and writing will cause trouble if a job must be rolled back to an old 
checkpoint image. For compatibility reasons, a file opened for both reading 
and writing will result in a warning but not an error.

– A fair amount of disk space must be available on the submitting machine for storing a – A fair amount of disk space must be available on the submitting machine for storing a 
job's checkpoint images. A checkpoint image is approximately equal to the virtual 
memory consumed by a job while it runs. If disk space is short, a special checkpoint 
server can be designated for storing all the checkpoint images for a pool.

– On Linux, your job must be statically linked. condor_compile does this by default. 
Dynamic linking is allowed on Solaris.

– Reading to or writing from files larger than 2 GB is not supported.

– Compiler choices limited by “condor_compile”.



Condor Compile Restrictions
Vanilla Universe

• Recommendations per Phil Cheeseman (Purdue 
Condor Guru)

• Limitations:
– Multi-process jobs are not allowed. This includes system calls such as fork(), exec(), 
and system().

– Static linking recommended to widen range of potential execution platforms.

– Execution very similar to other batch systems in the case of vanilla codes.

– Not well suited for jobs running more than a few hours without self-restart to recover – Not well suited for jobs running more than a few hours without self-restart to recover 
from preemption (eviction).

– Must be used for Windows applications.



Condor Compile Restrictions
General

• Recommendations per Phil Cheeseman (Purdue 
Condor Guru)

• Limitations:
– Neither universe should be expected to enable completion of work that cannot finish 
within PBS limits. Standard universe jobs requiring 2+ CPU weeks (without restart 
capability) to run are a risky proposition for Condor just as they are for PBS. Multi-hour 
vanilla universe jobs w/o self-restart capability are better suited for PBS (or a rewrite 
of the time consuming application(s)).of the time consuming application(s)).

– Preemption is a certainty for ‘long’ jobs although much less probable for jobs 
running less than an hour. Preemption is always a possibility.


