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Abstract 
The spatiotemporal recovery of vegetation within burned areas is a complex process that 

land managers go to great lengths to monitor and understand. When coupled with in situ field 
observations, remote sensing imagery, such as NDVI and dNBR, along with LiDAR data, can 
help land managers better understand the long-lasting effects of fire on an ecosystem. This study 
assesses how remotely sensed data can be used to quantify post-fire recovery of burned areas and 
applies these methods to 17 study fires across the Western US. We primarily focused on trends 
in post-fire NDVI as a method for assessing ecological recovery across grasslands, shrublands, 
and forests. Our findings suggest NDVI alone is not a suitable indicator of post-fire recovery due 
to limitations in capturing structural changes that occur to burned vegetation. However, when 
NDVI is used in conjunction with fire severity data (e.g., dNBR), LiDAR-derived vegetation 
height models, and field validation surveys, then land manager can achieve a much more 
comprehensive view of post-fire recovery. We found pre- and post-fire LiDAR data were 
essential for determining the structural recovery of vegetation across a landscape. When 
considered alongside field observations, these remote sensing techniques offer a better 
understanding of post-fire recovery. The ability to quantify post-fire recovery using remote 
sensing techniques can help land managers develop well-informed and effective post-wildfire 
recovery plans. 
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Introduction 

This study utilized Normalized Difference Vegetation Index (NDVI), differenced 
Normalized Burn Ration (dNBR) and Light Detection and Ranging (LiDAR) data to better 
understand temporal trends in vegetation recovery against fire severity. Remotely sensed data 
can be leveraged to guide post-fire response teams, such as USDA Forest Service Burned Area 
Emergency Response (BAER) assessment teams, tasked with mitigating landscape degradation 
through burned-area rehabilitation and long-term restoration efforts (National Interagency Fire 
Center (NIFC), n.d.). Monitoring past and current spatiotemporal trends in vegetation 
productivity relative to wildfire events is beneficial for optimizing recovery plans, quantifying 
recovery goals, and avoiding unnecessary resource expenditure on attempts to restore landscapes 
to unattainable or unsustainable conditions. Spatiotemporal patterns of NDVI can provide 
insights into the persistence and resilience of vegetation in response to known disturbances such 
as wildfires (Lacouture et al., 2020). NDVI estimates vegetative health; healthy, 
photosynthetically active vegetation shows stronger near-infrared (NIR) reflectance, while 
unhealthy vegetation exhibits greater reflectance in the visible red band (R) compared to NIR. 
Thus, NDVI values nearing 1.0 signify healthy, dense vegetation, while NDVI values nearing 0 
represent unhealthy, sparse, dormant, and/or dead vegetation biomass. NDVI values approaching 
-1.0 tend to indicate water bodies, urbanized areas, or otherwise barren land (NASA Earth 
Observatory, 2000). 

It is difficult to define or quantify what post-wildfire recovery means because recovery 
looks different across ecosystems and depends on ecosystem resilience, fire severity, and post-
fire weather conditions. Recently, a correlation (R2 = 0.49) between canopy cover loss and burn 
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severity has been reported (Epstein et al., 2024). This relationship was used to characterize 
recovery as the rate at which canopy cover returned to pre-fire conditions. Similarly, NDVI 
response may be a useful measurement to quantify the effects of fire on a landscape, especially 
when paired with a fire severity model such as the differenced normalized burn ratio (dNBR), 
and other land cover data collected in situ from within the burned area.  

This study characterized NDVI trends for 17 wildfires within three general land cover 
types (grass-dominant, shrub-dominant, and forest-dominant) in order to assess post-fire 
recovery across land cover types. However, since NDVI does not provide information on 
vegetation type, solely using this index may falsely indicate recovery in instances where trees or 
shrubs have been replaced by rapidly growing grasses that may produce similar NDVI values. To 
reduce such false positive errors, LiDAR data was utilized to visualize and characterize 
vegetation structure and changes in canopy height across burned areas where both pre- and post-
fire LiDAR data was available. 

The rate or time required to affect ecosystem recovery after a disturbance is dependent 
upon the extent and severity of the disturbance. Thus, fire severity–using dNBR–was considered. 
Low-severity fires in forested ecosystems are likely to experience less vegetation loss and less 
land-cover change as existing, mature trees may survive the fire, especially those that are fire-
adapted, such as the Ponderosa Pine (Pinus ponderosa). In contrast, high-severity fires may 
remove entire forests, making the landscape more vulnerable to a land-cover change transition. 
After major disturbances such as fire, secondary succession occurs, a natural process by which 
species return to the landscape in stages based on factors related to germination, growth rate, and 
adaptation to fire (Western Fire Chiefs Association, 2023). During the first stage of succession, 
the landscape is dominated by species known as post-fire specialists, which may be ferns and 
mosses. Within a short period of time, many herbaceous plant species will return and thrive 
without shading from a forest canopy. Over the next several years, tree seedlings begin to sprout 
and a full forest canopy may be re-established in just a few decades (USDA Forest Service, n.d.). 
However, the transition from pre-fire forests to post-fire shrublands and grasslands, especially in 
dry, low elevations, is particularly concerning. Shrub and grassland ecosystems tend to have 
lower fire return intervals which may lead to more frequent fires that may further reduce forest 
cover or effectively change the ecosystem type in a region (Stevens-Rumann & Morgan, 2019). 
In a previous study of post-fire tree regeneration across the Western US, researchers identified 
over 150 burned forest areas where very few seedlings, if any, were recruited within the burned 
area (Stevens-Rumann & Morgan, 2019). Their research suggested these forested areas are being 
replaced primarily by shrubs and grasses as a result of changing climate coupled with intense 
ecological disturbance from the wildfire. Overall, burned areas with low tree recruitment were 
most common in dry, low-elevation forests, but were also found in several wet, high-elevation 
forests (Stevens-Rumann & Morgan, 2019). In order to meaningfully interpret post-fire recovery, 
an understanding of fire severity and land cover type is essential in conceptualizing how NDVI 
and LiDAR are able to characterize change across a burned landscape. 

 
Methods & Materials 
Study area 

This study examined 17 wildfires across the western United States (Figure 1). 
Information describing the fire year, name, state, acres burned, GACC region, peak growing 
season, and cause were recorded (Table 1). For each fire, the final fire perimeter was acquired 



3 
 

from the Historic Fires Database (HFD) (Weber, 2024) and used to calculate spatial statistics for 
NDVI, land cover, and fire severity (i.e., dNBR).  

 
Figure 1. The 17 wildfires examined in this study and seven GACC regions as delineated by the National 
Interagency Fire Center (2024). Each of the 17 study fires are shown and labeled with the year and fire name. 
 
Data Acquisition & Processing 

For study fires occurring after 2012 (n = 8), the NDVI Baseline dataset developed by 
NASA RECOVER was used. Alternatively, fires that burned prior to 2012 (n = 9), Landsat 4-5 
TM (1982-2011) and Landsat 8-9 TM (2013-2025) Collection 2 Level 2 products were acquired 
using the USGS Earth Explorer. Next, these images were converted to NDVI using the formula 
(NIR-SWIR)/(NIR+SWIR). For each study fire, NDVI was acquired for a single date each year 
from within the peak growing season. In some cases, imagery could not be acquired during the 
peak growing season due to cloud cover. In these cases, the next nearest clear image to the 
growing season was used. When there were multiple clear images within the peak growing 
season for a given year, the image with the highest apparent greenness was selected based on 
visual observation of the image. The peak growing season months were determined by NDVI 
trends across Geographic Area Coordination Centers (GACC) regions for each fire (Table 1; 
Figure 2; Kowalski & Weber, 2024). NDVI data collection began up to two years prior to the 
fire start date and continued through 2024.  This was done to allow comparison of changes in 
growing season NDVI for the years immediately prior to and following the fire.  
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Table 1. Description of each fire explored in this study, including the fire year, name, state, acres burned, GACC region, peak 
growing season months within the GACC, and cause of the fire. Fires are sorted by fire year (oldest to most recent. 

FIRE 
YEAR FIRE NAME STAT

E ACRES GACC PEAK GROWING 
SEASON FIRE CAUSE 

1988 North Fork WY 565,116 Northern Rockies June/July Human-caused 
1988 Canyon Creek MT 167,875 Northern Rockies June/July Lightning 
1992 Foothills ID 228,076 Great Basin June/July Lightning 
1993 Brush NM 39,349 Southwest August/September Lightning 
1993 Wapati Peak CO 20,857 Rocky Mountain June/July Unknown 
1996 Leamington Complex UT 158,029 Great Basin June/July Lightning 
1996 Simnasho OR 117,964 Northwest July/August Human-caused 
1996 Lone AZ 60,574 Southwest August/September Human-caused 
1999 New Pass Complex NV 172,226 Great Basin June/July Lightning 
2015 Soda ID 283,626 Great Basin June/July Lightning 
2015 River Complex CA 77,414 Northern California June/July Lightning 
2015 Butte CA 70,854 Southern California June/July Powerline 
2015 Bear Creek MT 67,292 Northern Rockies June/July Lightning 
2015 Cougar Creek WA 53,584 Northwest July/August Lightning 
2015 Whitetail AZ 33,626 Southwest August/September Lightning 
2016 Beaver Creek CO 38,395 Rocky Mountain June/July Human-caused 
2021 Dixie CA 963,405 Northern California June/July Powerline 

Pre-fire NDVI conditions were estimated by extracting the median statistic from the 
NDVI Baseline dataset within each fire perimeter (NASA RECOVER, 2023; Schnase et al., 
n.d.). This method of estimating pre-fire conditions may not be perfectly representative of areas 
that have burned repeatedly within the last decade, however median NDVI is a resilient statistic 
and less likely to show this effect compared to the mean. We graphed both median and 
maximum NDVI Baseline statistics against the growing season NDVI values for each year 
following the fire.  

 
Figure 2. Average monthly NDVI values within each of the 7 GACCs using data from 2013-2022. Blues represent 
late spring, greens represent early summer, and orange represents late summer. NDVI values and their 
corresponding dates were extracted from the multidimensional NDVI Baseline and averaged for each month. 
NOTE: NDVI values have been scaled by a factor of 10,000. 
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 Dominant land cover was characterized within each fire perimeter using the Existing 
Vegetation Type (EVT) dataset provided by LANDFIRE (2023). Within each fire perimeter, the 
percent of land cover type was acquired for two fields, vegetation subclass (SBCLS) and Society 
of American Foresters/Society for Range Management cover type (SAF SRM). Using these data, 
two land cover pie charts were created for each study fire which help to visualize the relative 
percent of the top five landcover classes in each respective category. These charts provided a 
better understanding of landscape conditions at the time the EVT model was developed, but 
should be interpreted with some caution as there are many assumptions and generalizations 
associated with such spatially extensive models. These pie charts were used to describe each 
study fire as grass-dominant, shrub-dominant, or forest-dominant based on the general dominant 
vegetation and cover types. 

In order to investigate the influence of fire severity, dNBRs were calculated for each 
study fire. The dNBR is the difference between the pre-NBR and post-NBR. The timing of pre- 
and post-fire imagery collection is important due to the natural phenological differences 
occurring between years and between landscapes. To best assess change relative to fire, all 
factors effecting change should be eliminated save for the fire itself. To achieve this, pre- and 
post-fire imagery were collected within similar phenological stages to minimize seasonal 
changes in vegetation. Given limitations imposed by satellite return intervals, the atmospheric 
effects of the fire, and the timing and duration of the fire itself, it was difficult to acquire suitable 
imagery that eliminated natural phenological change. Rather than trying to acquire pre- and post-
fire imagery immediately bounding a fire occurrence, longer-term comparisons were found to be 
suitable and possibly more effective at determining change and recovery. Using this approach, 
suitable pre-fire images were acquired from within the growing season of the fire year. The post-
fire image was acquired within the growing season of the following year using a phenological 
synchronization approach (USDA Forest Service, 2006; Weber, 2001). 

NBRs were calculated using the near-infrared (NIR) and short-wave infrared (SWIR) 
bands of an image as follows: (NIR-SWIR)/(NIR+SWIR). The NIR and SWIR bands are used in 
the Normalized Burn Ratio calculation because these spectral bands change more in response to 
fire effects than other spectral bands and respond in opposite ways (USDA Forest Service, 2006). 
Across forested ecosystems, NIR generally exhibits a strong decrease in post-fire imagery while 
SWIR exhibits a strong increase. The effects of fire do not always lead to the loss of vegetation 
which would typically lead to a decrease in reflectance. In some cases, fire enhances ecological 
productivity and reflectance is actually increased in the post-fire imagery. This most commonly 
occurs in herbaceous and grassy areas where the vegetation can grow back quickly in response to 
fire-associated nutrient availability. However, the opposite is expected for forested and shrubland 
regions where re-growth of the established vegetation is likely to be much slower. This contrast 
between the bands and their ability to capture both positive and negative changes in reflectance 
post-fire is what makes the NBR effective at identifying burned areas across a variety of 
landscapes (USDA Forest Service, 2006). 

Pre- and post-fire images were acquired as close to the start date and containment date as 
possible for each fire while avoiding interference from smoke or clouds. Images were acquired 
using USGS Earth Explorer for Landsat 8-9 Collection-2 Level-2 Surface Reflectance imagery 
(fires burned after 2012) or Landsat 4-5 Collection-2 Level-2 Surface Reflectance imagery (fires 
burned prior to 2012). When necessary, scenes were mosaiced before calculating dNBR. In the 
case of the Soda fire, suitable post-fire imagery could not be found through the Landsat 
collections. Instead, four scenes of Sentinel-2 L2A Surface Reflectance imagery were acquired 
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and mosaiced together in order to calculate the post-fire NBR. For this reason, the Sodar Fire 
dNBR is a mixed sensor dNBR and is not directly comparable to the Landsat-derived dNBRs, 
despite using the same workflow. The use of mixed sensors to create a single satellite-image 
product introduces uncertainty, as the two sensors have not been harmonized or properly aligned 
(Ju et al., 2025). For each fire, dNBRs were classified into seven fire severity thresholds: high, 
moderate-high, moderate-low, low, unburned, enhanced regrowth-low, and enhanced regrowth-
high. These fire severity thresholds were defined by the USGS (Table 2). 
 
Table 2. Fire severity classes for dNBRs as proposed by the USGS. 

Severity Level dNBR Range (scaled by 103) 
Enhanced Regrowth, high (post-fire)                -500 to -251 
Enhanced Regrowth, low (post-fire)                -250 to -101 
Unburned                -100 to 99 
Low Severity                 100 to 269 
Moderate-low Severity                 270 to 439 
Moderate-high Severity                 440 to 659 
High Severity                 660 to 1300 

 
Case Study: 2021 Dixie Fire 

The 2021 Dixie fire in California was selected as a focused case study fire for this 
research. Pre- and post-fire LiDAR was available for the Dixie fire, providing a unique 
opportunity to assess changes in canopy height relative to NDVI trends, fire severity, and land 
cover type. We acquired 2018 pre-fire LiDAR (USGS, 2018) and 2022 post-fire LiDAR (USGS, 
2022). 

 Upon visual inspection of the LiDAR point cloud, clusters of data points both high above 
and far below actual ground surface were detected. The high clusters were likely from birds and 
we speculate the low clusters may be data anomalies or errors. These clusters were filtered out 
using a denoising process with LAS Tools where all data points 50 m above and 3 m below the 
surface were removed from both datasets. After denoising, the original LAS files were converted 
to raster tiles, mosaicked together, and clipped to the fire perimeter to create Digital Surface 
Models (DSMs) of pre- and post-fire conditions. The authors note that there were areas within 
the fire perimeter with incomplete LiDAR coverage for 2022. Data in these areas were set to a 
height above surface equal to zero. Then, the 2018 DSM was subtracted from the 2022 DSM to 
create a change detection model for canopy height, where loss in height post-fire is represented 
as negative values and post-fire gain is represented by positive values. Statistics were calculated 
on the resulting change detection model by running zonal statistics within each of the fire 
severity classes to determine the statistical difference between canopy height change across each 
of the severity classes. 

NDVI and dNBR data were processed twice for the 2021 Dixie Fire. Once using imagery 
from the Landsat 8 & 9 Collection-2 Level-2 as described above and as is consistent with the 
other 16 study fires, and again using satellite imagery from Landsat 8 & 9 Collection-2 Level-1. 
During this study, it became apparent that there may be an issue in the Landsat 8 & 9 Collection-
2 Level-2 products. The raw data values associated with the acquired products did not align with 
values expected for properly atmospherically corrected surface reflectance products. To address 
this, we acquired Collection-2 Level-1 satellite imagery for the Dixie fire and then used Idrisi 
TerrSet to atmospherically correct the data using the cos(t) method. These manually corrected 
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images were then used to process NDVI recovery and the dNBR following the same 
methodology outlined above. 

Atmospherically correcting the Collection-2 Level-1 products involves additional 
processing work, but generated more reasonable results for both NDVI trends and dNBRs. In 
comparison to authoritative field-validated dNBRs provided by BAER teams, the dNBRs 
calculated from the Collection-2 Level-1 products provided similar results, whereas dNBRs 
calculated from the Collection-2 Level-2 products appeared to underestimate fire severity.  

 
Results & Discussion 
Land Cover Analysis  

Of the 17 study fires, six were classified as forested, seven were classified as shrubland, 
and four were classified as grassland (Table 3). Understanding the general land cover within a 
given region is essential in contextualizing observed NDVI values and how they change spatially 
over time, especially in response to disturbance such as wildfire. The severity of a disturbance is 
also relevant. We may expect grasslands and shrublands to be more vulnerable to low-intensity 
fires, but have the capacity to recover relatively quickly. In comparison, a forested area may look 
virtually unchanged when viewing imagery following a low-severity fire, where the fire does not 
impact the canopy. However, in the case of a high-severity wildfire in a forested region, we 
expect the burned area to take decades to recover. While ecological recovery for forested 
ecosystems is expected to be a slow process, this is complicated by the tendency of invasive 
species, especially annual grasses, to “invade” burned areas, shifting the ecological assemblage 
and subsequently, the fire regime within the burned area (Fusco et al., 2019). 
 
Table 3. Results for each study fire explored in this study, including the study fire year/name, acres burned, 
dominant landcover type, the number of annual NDVI images acquired within the growing season, and the number 
of years required for post-fire NDVI to return to pre-fire NDVI conditions. Fires are sorted by cover type and then 
by acres in descending order. 

STUDY FIRE ACRES COVER TYPE NDVI SAMPLES NDVI RECOVERY (years) 
2021 Dixie (CA) 963,405 Forest 4 5 

1988 North Fork (WY) 565,116 Forest 36 10 

1988 Canyon Creek (MT) 167,875 Forest 36 5 

2015 River Complex (CA) 77,414 Forest 10 10 

1996 Lone (AZ) 60,574 Forest 28 10 

1993 Brush (NM) 39,349 Forest 31 5 

2015 Soda (ID) 283,626 Shrub 10 0 

1992 Foothills (ID) 228,076 Shrub 32 3 

1996 Leamington Complex (UT) 158,029 Shrub 28 10 

1999 New Pass Complex (NV) 172,226 Shrub 25 10 

1996 Simnasho (OR) 117,964 Shrub 28 20 

2015 Whitetail (AZ) 33,626 Shrub 10 2 

1993 Wapati Peak (CO) 20,857 Shrub 31 20 

2015 Butte (CA) 70,854 Grass 10 15 

2015 Bear Creek (MT) 67,292 Grass 10 10 

2015 Cougar Creek (WA) 53,584 Grass 10 10 

2016 Beaver Creek (CO) 38,395 Grass 9 10 
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NDVI Recovery  
Investigations of annual NDVI sampled within the peak growing season reveal NDVI 

alone may not be suitable to assess post-fire recovery. While there was normally a strong 
decrease in NDVI in the year immediately after a fire followed by a slow recovery (Figure 3), 
NDVI often rebounded quickly, and occasionally even exceeded pre-fire unburned conditions 
within just 2-5 years (Figure 4). While this rapid rebound of NDVI may be expected for grass-
dominant landscapes, it also commonly occurred in forested ecosystem types (Figure 4). 
Interestingly, grass-dominated fires often required 10-20 years to return to pre-fire NDVI 
conditions (Table 3; Figure 5). In some cases, NDVI did not decrease in the year after a fire and 
in the case of the Soda (Figure 6) and Foothills fires, NDVI appeared to have little response to 
the fire disturbance and was even slightly elevated during the year of the fire.  

 
Figure 3. Annual average NDVI trend calculated within the 1988 North Fork, WY fire (forest-dominated) using 
imagery from Landsat 8 & 9 Collection-2 Level-2. NDVI has been scaled by 10,000. Annual NDVI was acquired 
within the peak growing season (June and July) for the Northern Rockies GACC. The burn was first captured in the 
1989 image. 
 

 
Figure 4. Annual average NDVI trend calculated within the 1988 Canyon Creek, MT fire (forest-dominated) using 
imagery from Landsat 8 & 9 Collection-2 Level-2. NDVI has been scaled by 10,000. Annual NDVI was acquired 
within the peak growing season (June and July) for the Northern Rockies GACC. The burn was first captured in the 
1989 image. 
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Figure 5. Annual average NDVI trend calculated within the 2015 Butte, CA fire (grass-dominated) using imagery 
from Landsat 8 & 9 Collection-2 Level-2. NDVI has been scaled by 10,000. Annual NDVI was acquired within the 
peak growing season (June and July) for the Southern California GACC. The burn was first captured in the 2016 
image. 
 

 
Figure 6. Annual average NDVI trend calculated within the 2015 Soda, ID fire (shrub-dominated) using imagery 
from Landsat 8 & 9 Collection-2 Level-2. NDVI has been scaled by 10,000. Annual NDVI was acquired within the 
peak growing season (June and July) for the Great Basin GACC. The burn was first captured in the 2016 image.  

 
The mean trends in NDVI recovery time across landcover type (Table 4) do not 

realistically align with what is expected in terms of ecological post-fire recovery where forested 
landscapes would take longest to recover (10-20 years), shrublands would take a moderate 
amount of time to recover (5-10 years), and grasslands would recover fastest (<5 years). Instead, 
we are observing the opposite trend; forested landscapes are exhibiting the fastest NDVI 
recovery responses after a fire. This unexpected pattern could be due to several factors. NDVI 
represents the greenness of visible vegetation. In low to moderate severity burns, the forest 
canopy may remain intact, partially masking the burned understory vegetation and altering the 
perceived recovery time. Additionally, while repeat burns weren’t investigated within this study, 
they were observed for some of the fires in the annual satellite imagery. Repeat burns may be 
more likely in grasslands and shrublands, which would extend the recovery time if an area 
burned before the NDVI recovered to pre-fire conditions. 
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Table 4. Mean number of years required for burned areas of each landcover type to return to pre-fire conditions 
based solely on NDVI response (n = 17 fires). 

Landcover Type Years 

Forest   7.5 
Shrub   9.3 
Grass 11.3 

 
Fire Severity  
 When considering the response of vegetation (as characterized by NDVI) to a fire, it is 
essential to also consider fire severity. Using the dNBRs for each of the study fires, we found fire 
severity could not completely explain the unexpected trends in NDVI recovery. For example, the 
large decrease and rapid recovery of NDVI following the Canyon Creek fire might be plausible 
if the fire had been of very low severity, primarily burning only understory vegetation. However, 
the dNBR describes the 1988 Canyon Creek fire as 23% moderate-low severity (Figure 7, Table 
5), so one would expect there to be tree mortality, especially since this is a forest-dominated 
landscape. 

 

Figure 7. A dNBR calculated for the 1988 Canyon Creek, MT fire using pre-fire imagery from 7/20/1988 and post-
fire imagery from 9/22/1988. Pre- and post-fire images were acquired from Landsat 4 & 5 Collection-2 Level-2.  

 
To better understand this, NDVI response was spatially stratified by fire severity classes 

as defined in the dNBR for each study fire. Based on the dNBR for the Canyon Creek fire 
(Figure 7), NDVI exhibited similar trends across all severity classes, but there is an interesting 
association between increased fire severity and an elevated NDVI signal (Figure 8). While each 
severity class exhibits a relatively similar response in the year immediately following the fire, it 
is counterintuitive for NDVI to increase and remain elevated for moderate to high severity burn 
areas relative to the unburned and low severity burn areas. The simplest explanation for this 
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relationship is that lower severity burned areas may have had less vegetation initially, resulting 
in NDVI values being consistently lower than areas with more vegetation where the fire burned 
more severely due to the abundance of fuel. 

 
Table 5. Fires explored in this study, including the study fire year/name and percent burned area classification. 
Regrowth and unburned severity classes are not included but represent the remaining percent of the burned area for 
each fire. Percent in each severity class was determined from the dNBR in which the pixels within each severity 
class were compared to the total number of pixels within the fire perimeter.  

STUDY FIRE Low Severity Mod-Low Severity Mod-High Severity High Severity 

2021 Dixie (CA) 29% 24% 17% 2% 

1988 North Fork (WY) 49% 13% < 1% < 1% 

1988 Canyon Creek (MT) 36% 23% 1% 0% 

1993 Brush (NM) 11% 1% 0% 0% 

1996 Lone (AZ) 46% 31% 1% 0% 

2015 River Complex (CA) 8% 1% < 1% 0% 

1992 Foothills (ID) 53% 4% < 1% 0% 

1993 Wapati Peak (CO) 3% < 1% 0% 0% 

1996 Leamington Complex (UT) 68% 3% 0% 0% 

1996 Simnasho (OR) 64% 4% < 1% 0% 

1999 New Pass Complex (NV) 67% 1% 0% 0% 

2015 Soda (ID) 52% 8% < 1% 0% 

2015 Whitetail (AZ) < 1% 0% 0% 0% 

2015 Butte (CA) 59% 22% < 1% < 1% 

2015 Bear Creek (MT) 20% < 1% 0% 0% 

2015 Cougar Creek (WA) 27% 2% 0% 0% 

2016 Beaver Creek (CO) 44% 35% 3% 0% 

 
A similar relationship was observed across all 17 study fires, though in the case of the 

1992 Foothills fire, NDVI within moderate and low-severity burn areas experienced short-term 
increases in NDVI while higher severity classes decreased, possibly indicating a repeat burn 
during 2004. However, the absolute NDVI values still remained high within the high severity 
classes relative to the lower burn severity classes (Figure 9). 
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Figure 8. Annual average NDVI within each fire severity class for the 1988 Canyon Creek, MT fire NDVI values 
have been scaled by 10,000 with imagery acquired during the peak growing season (June and July) for the Northern 
Rockies GACC. The burn was first captured in 1989 imagery. 
 

 
Figure 9. Annual average NDVI within each fire severity class for the 1992 Foothills Fire, ID. NDVI has been 
scaled by 10,000 with imagery acquired within the peak growing season (June and July). The burn was first 
captured in the 1989 image. 
 
Case Study: 2021 Dixie Fire 
 Using the Existing Vegetation Type (EVT) dataset (LANDFIRE, 2023), we determined 
the burned area for the 2021 Dixie fire was forest-dominated with some shrubland. It is worth 
noting that the general tree species found in this region (e.g., white fir (Abies concolor) and red 
fir (Abies magnifica)) (Figure 10) are not particularly fire-resistant.  
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Figure 10. Top five Existing Vegetation Types (left) and Society of American Foresters/Society for Range 
Management cover classes (right) within the burned area of the 2021 Dixie fire in California. The burned area 
primarily consists of forested lands, with some shrub cover. 

 
Overall, the 2021 Dixie fire was a relatively high-severity fire in comparison to the other 

study fires (Table 5). The fire has been reported as ⅓ high severity and ⅔ low to moderate 
severity (NPS), which doesn’t align with the dNBR calculated using pre- and post-fire imagery 
acquired from Landsat 8 & 9 Collection-2 Level-1 imagery (Figure 11). This discrepancy is 
expected, as it is standard for official dNBR products to be corrected using field observations of 
the burned areas to assess fire severity. These field observations are essential to generating 
proper fire severity maps, but initial non-corrected dNBRs can still be useful to estimate fire 
severity in the absence of field verification. Field-monitoring efforts by USDA Forest Service are 
ongoing for the Dixie fire. This study focused on remote sensing applications and field 
monitoring results are not reported here. 

The initial NDVI analysis for the 2021 Dixie fire describes a relatively small to moderate 
decrease in NDVI in response to the burn, followed by a relatively quick recovery, in which 
NDVI recovered by nearly 50% in just two years (Figure 12) and a fully recovered NDVI 
response within five years post-fire. This trend does not align well ecologically for a high-
severity fire (Figure 11) in a forest-dominated landscape.  
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Figure 11. A dNBR calculated for the 2021 Dixie, CA fire using pre-fire imagery from 7/11/2021 and post-fire 
imagery from 9/29/2021. These satellite images were acquired from Landsat 8 & 9 Collection-2 Level-1, and 
surface reflectance was corrected for in Idrisi Terrset using the cos(T) method before calculating the dNBR.  

 

 

Figure 12. Annual average NDVI calculated within the 2021 Dixie, CA fire perimeter using imagery from Landsat 8 
& 9 Collection-2 Level-2. NDVI has been scaled by 10,000 and imagery acquired during the peak growing season 
for the Dixie fire, which are the months of June and July. The burn was first captured in the 2022 image.  
 

The second NDVI analysis for the 2021 Dixie fire used Landsat 8 & 9 Collection-2 
Level-1 products which were atmospherically corrected in Idrisi TerrSet using the cos(t) method. 
In comparison to the previous method, the resulting NDVI trend is much better aligned with 
what we would expect to see for a wildfire in a forest-dominated ecosystem but it does not fit 
well within the NDVI Baseline dataset. This trend shows a drastic decline in NDVI in response 
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to the fire followed by much slower recovery (Figure 13). If NDVI continued to recover 
following this trend, full vegetation recovery would be expected within 6-7 years post-fire, 
which is still much faster than expected for a forested ecosystem. 

 
Figure 13. Annual average NDVI calculated within the 2021 Dixie, CA fire perimeter using imagery from Landsat 8 
& 9 Collection-2 Level-1. Imagery was atmospherically corrected in Idrisi TerrSet using the cos(T) method before 
calculating NDVI and then scaled by 10,000. The y-axis on this NDVI chart extends to 8,000 whereas all other 
NDVI trends exist between 0 and 5,000. NDVI data were acquired within the peak growing season for the Dixie fire, 
(June and July). The burn was first captured in 2021 image. 
 

LiDAR analysis reveals substantial canopy loss between 2018 and 2022 (Figure 14). 
This canopy loss is expected to represent tree removal/mortality between 2018 and 2022, which 
we assume is attributable to the 2021 Dixie fire. However, this assumption is based on proper 
spatial co-registration between the two LiDAR products (pre- and post-fire). We suspect a slight 
co-registration error exists between the two datasets, as there are small patches of extreme 
growth (e.g., 5 meters) adjacent to small patches of extreme loss (e.g., -5 meters) which are 
systematically consistent across the entire dataset. However, larger patterns of overall vegetation 
loss, no change, and vegetation growth can still be identified despite the small spatial 
misalignment. We suggest LiDAR data is essential for monitoring the recovery of forested 
ecosystems, along with NDVI, and field validation. The ability to assess canopy height changes 
over a broad region provides important spatial context for both the pre- and post-fire vegetation, 
while NDVI provides important information on the health of vegetation on the landscape. Field 
observations are necessary to validate and correct the results of remote sensing techniques used 
for burned areas.  
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Figure 14. Map of canopy height change within a portion of the 2021 Dixie fire where both pre-fire (2018) and post-
fire (2022) LiDAR data were available (indicated in the upper right extent map). Areas of no change were excluded 
from the histogram to illustrate gains and losses in canopy height between 2018 and 2022. The dNBR calculated for 
the Dixie fire is displayed within the fire perimeter in the extent map, upper right. 
 
Conclusions 

Throughout this study, we tested a methodology for utilizing NDVI to assess post-fire 
recovery and found that while NDVI may not be a suitable indicator of post-fire recovery on its 
own, it is very useful when used in conjunction with fire severity data (dNBR), LiDAR canopy 
height models, along with necessary field validation surveys. NDVI provides important 
information on the health of existing vegetation, while LiDAR is useful to understand vegetation 
height and structure. The combination of these remote sensing capabilities allows changes in 
vegetation’s health and structure to be distinguished and assessed across different fire severity 
regions, providing a more comprehensive understanding of post-fire recovery and ecological 
succession. 
 
Acknowledgements 
This study was made possible through the financial support of the National Aeronautics and 
Space Administration (NASA) under grant award 80NSSC22K1815.  The authors also thank the 
support of Brad Quayle and Michelle Coppoletta (USDA Forest Service) for providing data for 
many of the wildfires analyzed in this study. 

 
References 
Epstein, M. D., Seielstad, C. A., & Moran, C. J. (2024). Fire impact and vegetation recovery in 

post-fire landscapes. Fire Ecology, 20(1), 285, 
https://fireecology.springeropen.com/articles/10.1186/s42408-024-00285-9  

https://fireecology.springeropen.com/articles/10.1186/s42408-024-00285-9


17 
 

Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C., & Bradley, B. A. (2019). Invasive grasses 
increase fire occurrence and frequency across US ecoregions. Biological Sciences, 116 
(47) 23594-23599, https://www.pnas.org/doi/full/10.1073/pnas.1908253116  

Ju, J., Zhou, Q., Freitag, B., Roy, D. P., Zhang, H. K., Sridhar, M., … & Neigh, C. S. R. (2025). 
The Harmonized Landsat and Sentinel-2 version 2.0 surface reflectance dataset. Remote 
Sensing of Environment, 324(1), 114723, https://doi.org/10.1016/j.rse.2025.114723  

Kowalski, K. J. & Weber, K. T. (2024). Comparing NDVI Across Geographic Area 
Coordination Centers. Idaho State University GIS Training and Research Center, 
https://giscenter.isu.edu/pdf/PDF_NASA_RECOVER2/NDVI_AnalysisByGACC.pdf  

Lacouture, D. L., Broadbent, E. N., & Crandall, R. M. (2020). Detecting Vegetation Recovery 
after Fire in a Fire-Frequented Habitat Using Normalized Difference Vegetation Index 
(NDVI). Forests, 11(7), 749, https://doi.org/10.3390/f11070749 

LANDFIRE. (2023). Existing Vegetation Type Dataset, LF 2.4.0, 
https://landfire.gov/vegetation/evt  

NASA Earth Observatory. (2000). Measuring Vegetation (NDVI & EVI), 
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2
.php 

NASA RECOVER. (2023). NASA RECOVER 2.0 NDVI Baseline to Support Long-Term Post-
Fire Monitoring, 
https://giscenter.isu.edu/pdf/PDF_NASA_RECOVER2/RECOVER_NDVI_Baseline.pdf 

National Interagency Fire Center. (2024). GACC National Website Portal: About Us, 
https://gacc.nifc.gov/admin/about_us/about_us.htm 

National Interagency Fire Center. (n.d.). Post Fire Recovery. 
https://www.nifc.gov/programs/post-fire-recovery  

Schnase, J., Carroll, M., Gill, R., Wooten, M., Weber, K., Blair, K., May, J., & Toombs, W. 
(n.d.). NASA WRANGLER: Automated Cloud-based Data Assembly in the RECOVER 
Wildfire Decision Support System. ISU GIS Training and Research Center. 
https://giscenter.isu.edu/research/Techpg/nasa_RECOVER/pdf/schnase-igarss-1728.pdf  

Stevens-Rumann, C., & Morgan, P. (2019). Tree regeneration following wildfires in the western 
US: A review. Fire Ecology, 15(1), 15, 
https://fireecology.springeropen.com/articles/10.1186/s42408-019-0032-1  

USDA Forest Service. (n.d.). “First Returners.” 
https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd575963.pdf  

USDA Forest Service. (2006). FIREMON Landscape Assessment (LA) Sampling and Analysis 
Methods. Gen. Tech. Rep. RMRS-GTR-164-CD. 
https://www.frames.gov/documents/projects/firemon/FIREMON_LandscapeAssessment.
pdf  

USGS. (2018). USGS Lidar Point Cloud CA_NoCAL_3DEP_Supp_Funding_2018_D18. USGS 
LiDAR Dataset: 
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_NoCA
L_3DEP_Supp_Funding_2018_D18/CA_NoCAL_Wildfires_PlumasNF_B1_2018/  

USGS. (2022). USGS Lidar Point Cloud CA_SierraNevada_B22. USGS LiDAR Dataset:  
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_Sierra
Nevada_B22/CA_SierraNevada_7_2022/  

Weber, K. T. (2024). Historic Fires Database (HFD). Idaho State University GIS Training and 
Research Center. https://giscenter.isu.edu/research/Techpg/HFD/  

https://www.pnas.org/doi/full/10.1073/pnas.1908253116
https://doi.org/10.1016/j.rse.2025.114723
https://giscenter.isu.edu/pdf/PDF_NASA_RECOVER2/NDVI_AnalysisByGACC.pdf
https://doi.org/10.3390/f11070749
https://doi.org/10.3390/f11070749
https://landfire.gov/vegetation/evt
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://giscenter.isu.edu/pdf/PDF_NASA_RECOVER2/RECOVER_NDVI_Baseline.pdf
https://giscenter.isu.edu/pdf/PDF_NASA_RECOVER2/RECOVER_NDVI_Baseline.pdf
https://giscenter.isu.edu/pdf/PDF_NASA_RECOVER2/RECOVER_NDVI_Baseline.pdf
https://gacc.nifc.gov/admin/about_us/about_us.htm
https://gacc.nifc.gov/admin/about_us/about_us.htm
https://gacc.nifc.gov/admin/about_us/about_us.htm
https://www.nifc.gov/programs/post-fire-recovery
https://giscenter.isu.edu/research/Techpg/nasa_RECOVER/pdf/schnase-igarss-1728.pdf
https://fireecology.springeropen.com/articles/10.1186/s42408-019-0032-1
https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd575963.pdf
https://www.frames.gov/documents/projects/firemon/FIREMON_LandscapeAssessment.pdf
https://www.frames.gov/documents/projects/firemon/FIREMON_LandscapeAssessment.pdf
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_NoCAL_3DEP_Supp_Funding_2018_D18/CA_NoCAL_Wildfires_PlumasNF_B1_2018/
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_NoCAL_3DEP_Supp_Funding_2018_D18/CA_NoCAL_Wildfires_PlumasNF_B1_2018/
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_SierraNevada_B22/CA_SierraNevada_7_2022/
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/CA_SierraNevada_B22/CA_SierraNevada_7_2022/
https://giscenter.isu.edu/research/Techpg/HFD/


18 
 

Weber, K. T. (2001). A method to incorporate phenology into land cover change analysis. 
Journal of Range Management, 54(A1-A7), 
https://giscenter.isu.edu/research/techpg/lcc/pdf/pheno-paper.pdf  

Western Fire Chiefs Association. (2023). “Ecological Succession After A Fire”, Fire Ecology 
Wildfire Article: https://wfca.com/wildfire-articles/ecological-succession-after-a-forest-
fire/. Accessed April, 2025. 

 
Supplementary Materials 
A data package containing the spatial data created for this study is available at https://giscenter-
sl.isu.edu/AOC/AOC_Research/recover2/PostFireRecoveryStudy.zip 
 
 

https://giscenter.isu.edu/research/techpg/lcc/pdf/pheno-paper.pdf
https://wfca.com/wildfire-articles/ecological-succession-after-a-forest-fire/
https://wfca.com/wildfire-articles/ecological-succession-after-a-forest-fire/
https://giscenter-sl.isu.edu/AOC/AOC_Research/recover2/PostFireRecoveryStudy.zip
https://giscenter-sl.isu.edu/AOC/AOC_Research/recover2/PostFireRecoveryStudy.zip

	Abstract
	Introduction
	Methods & Materials
	Results & Discussion
	Conclusions
	Acknowledgements
	References
	Supplementary Materials

