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1. Abstract 
Escalating severity and frequency of drought and wildfire call for effective and cost-efficient mitigation 
planning and monitoring protocols. The Palouse ecoregion, an agricultural epicenter in North-central Idaho, 
is of particular concern as both drought and wildfire present substantial economic threats. The DEVELOP 
team implemented Earth observation data to assist the Idaho Office of Emergency Management, Idaho 
Department of Water Resources, and Idaho Department of Lands in updating the state’s Hazard Mitigation 
Plan by enhancing their drought and fire monitoring capabilities. The team utilized Landsat 8 Operational 
Land Imager (OLI), and Aqua and Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS), along 
with ancillary datasets, to assess drought indicators and map hazard susceptibility. The team upgraded the 
state’s current fire hazard model by updating existing data layers and adding drought indicator data to support 
partners’ continued assessment of fire hazard conditions. The team observed Evaporative Demand Drought 
Index (EDDI) spikes during the highest fire occurrence and burned area years in the study period: 2015 and 
2021. Models from dry, high fire occurrence and burned area year 2015 outperformed models from mesic, 
low fire occurrence and burned area year 2016. The increased understanding of drought conditions and fire 
susceptibility in this ecosystem will assist partners in improving land management practices. 
 
Key Terms: wildfire, drought, Landsat, NDVI, EDDI, ESI, fire hazard, hazard modeling 
 
2. Introduction 
2.1 Background Information 
The area and frequency of wildfires in the Western United States have grown over recent decades. From 1984 
to 2011, the total area burned and number of large wildfire incidents (>1,000 acres) increased annually by 355 
square kilometers and 7 incidents, respectively (Dennison et al., 2014). Additionally, “mega-fires” greater than 
100,000 acres have increased in frequency from 1950 to 2019 (Weber & Yadav, 2020). See Figures A1-A5 in 
Appendix A for Idaho- and study area-specific fire trend data. 
 
While some regions have exhibited lower drought severity in recent years, the Southwest and West have 
endured increased hydrological and soil moisture drought severity and corresponding vegetation stress 
(Apurv & Cai, 2021). This is a continuation of the multidecadal drought pattern in the Southwest and West, 
which experienced increased drought duration and severity from 1925 to 2003 (Andreadis & Lettenmaier, 
2006). In Idaho, heightened growing season maximum temperatures were expected to elevate 
evapotranspiration (ET), driving additional drought pressure in the state if combined with lower precipitation 
levels (Sohrabi et al., 2013). However, a pilot study of the Intermountain West region found that while 
climate variables drive vegetation production to a significant extent, no significant changes to precipitation or 
maximum temperature were observed from 2000–2020 (Yadav et al., 2020).   
 
Drought and wildfire alike generate risk for natural and built environments and their inhabitants. 
Susceptibility to these phenomena involves a complex, overlapping mix of variables and conditions. For 
example, drought stress can increase fuel load from dead plants, leading to larger, more intense fires (Li et al., 
2020). Similarly, live vegetation biomass, primarily affected by the seasonal moisture cycle, can desiccate due 
to unseasonably hot and dry conditions. When preceded by high volumes of spring vegetation growth, 
drought conditions elevate the risk of fire.  
 
In a review of drought and wildfire across the Western U.S. over the last 750 years, fire was more prevalent in 
characteristically cooler, wetter regions during warm, dry periods (Scasta et al., 2016). Opposite effects were 
observed in arid regions, where drought conditions may reduce fire occurrence (likely due to reductions in 
biomass). These studies highlight regional specificities in the drought-fire relationship and emphasize that fire 
susceptibility increases when drought conditions follow heavy growth, while susceptibility is lower in the 
opposite circumstance.  
 
2.2 Study Area & Period 
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The team analyzed drought and wildfire trends in North-central Idaho, defining a study area that included the 
Palouse Prairie ecoregion as well as surrounding forest, shrub, and grassland, across a range of elevations. 
This diversity of ecoregions and land features improves reproducibility for future study regions. Furthermore, 
the study area falls completely within a corresponding Landsat 8 OLI path, enabling same-day image 
composites across its entirety. The study period was 2013–2021. 
 

 
Figure 1. The state of Idaho with historical fires 1950–2021 demarcated in red; the current study region 

outlined in dark blue and highlighted in the inset. Light blue shading indicates the Palouse Prairie ecoregion. 
 
2.3 Project Partners & Objectives 
The team partnered with the Idaho Office of Emergency Management (IOEM), Idaho Department of Water 
Resources (IDWR), and Idaho Department of Lands (IDL), who coordinate hazard mitigation plans for the 
state of Idaho. These include the Idaho Drought Plan (2001), the Idaho State Hazard Mitigation Plan (2018), 
and the Idaho Statewide Implementation Strategy for the National Fire Plan (2006). Existing wildfire 
mitigation efforts focus on creating fire-resistant landscapes and fire-adapted communities, reducing ignition 
and fuel sources, rehabilitating grassland and forested areas, and increasing public awareness. Existing 
drought mitigation efforts focus on weather modification, improving water quality, reducing water waste, and 
restoring damaged ecosystems.  
 
Understanding the condition and trends of both drought and wildfire is essential for partners to continue 
their work. Therefore, the team aimed to trace the history of fire and determine trends in two drought 
indicators: Evaporative Demand Drought Index (EDDI) and Evaporative Stress Index (ESI). Using those 
assessments, the team recreated IDL's static wildfire hazard model and updated it with the most recent data. 
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The team then generated hazard models enhanced with dynamic drought and fuel-proxy data for each year in 
the study period and analyzed outputs for accuracy. Finally, the team created a step-by-step protocol for 
partners to build the optimized model. These products were intended to assist partners in updating their state 
hazard mitigation plans, contextualize drought and wildfire in the study area, and help inform drought and 
wildfire resource staging. 
 
3. Methodology 
3.1 Data Acquisition  
EDDI and ESI are indices used to assess drought conditions and potential. These indices are created across 
composite timeframes ranging from daily to several months. The team acquired EDDI 4-week Daily CONUS 
13km data product from the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences 
Laboratory (PSL) for the study period. The team also retrieved ESI 4-week Daily Global 5km data as geotiffs 
from the NASA SERVIR ClimateSERV Application. See equations B3 and B4 for respective EDDI and ESI 
calculation. 
 
The team acquired Dynamic World data (AI-produced highest probability near real-time land cover data) for 
the months of March–September, for the entire study period. Data from Keith Weber at ISU, included 
NASA RECOVER products for elevation, degree of slope, and aspect which provided continuous 
topographic data for the study area.  In addition, the Historic Fires Database (HFD) was downloaded and 
provided historical fire perimeters from 1950 to 2021 (Weber 2022). The team also acquired Federal 
Emergency Management Agency (FEMA) Wildland Urban Interface (WUI) data from partners at IDL. 
Acquisition of these data products is summarized in Table 1.  
 
Landsat 8 OLI scenes in path 42 rows 27 and 28 with less than 30% cloud cover were acquired for growing 
and fire seasons in study period years, first using the Earth Explorer website through USGS and later with 
USGS/EROS Machine-to-Machine API. Because the study area fell entirely within one Landsat path, same-
day scenes covering the study area were considered statistically comparable. The team only acquired Landsat 
scenes for which both path/row 042/027 and 042/028 met criteria. Afterwards, the team clipped Terra 
MODIS 16-day 250m data, provided by Keith Weber, to the Western United States in the USA Contiguous 
Albers Equal Area Conic (WKID 102039) coordinate system. See Table 2 for summary of these NASA data 
products. 
  
Table 1 
List of datasets utilized for this project 

Source Data Product Dates Acquisition Method 
NOAA – PSL Evaporative Demand Drought Index 

(EDDI): 4-week Daily CONUS 13km 
2013–2021 Scripted download from 

NOAA data archive 

Keith Weber, GIS 
Training and Research 
Center at Idaho State 
University and USGS 

 NASA RECOVER value added 
National Elevation Dataset 

2016 From Keith Weber, ISU 

Google, World 
Resources Institute 
 

Dynamic World 10m V1 – Based on 
ESA Copernicus Sentinel-2 MSI Level 
1C data 

Mar. 1 – 
Sep. 30, 
2021 
 

Google Earth Engine 
script and TIF download 
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Keith Weber, Idaho 
State University GIS 
Training and Research 
Center 

Historical Fires Database 1950–2021 From Keith Weber, ISU 

FEMA Hazard 
Mitigation Plan 

Wildland Urban Interface (WUI) 2022 From Tyre Holfeltz, IDL 

NASA MSFC/SPoRT Evaporative Stress Index (ESI): 4-
week Daily Global 5km 

2013–2021 
 

SERVIR ClimateSERV 
Application 

LANDFIRE, Earth 
Resources Observation 
and Science Center  

LANDFIRE Existing Vegetation 
Type 

2020 From Keith Weber, ISU 

USGS and USDA National Watershed Boundary Dataset 
12-digit hydrologic unit (HU) 

2022 ArcGIS Portal 

 
Table 2 
List of NASA sensors and data products utilized for this project 

Platform and Sensor Data Product Dates Acquisition Method 
Landsat 8 OLI Landsat 8 Operational Land 

Imager and Thermal Infrared 
Sensor Collection 2 Level-1  

Mar. 1–Sep. 30, 
2013–2021 

Earth Explorer download 
& USUS/ EROS 
Machine-to-Machine API 

Aqua/Terra MODIS MOD13Q1 v006- 
MODIS/Terra Vegetation 
Indices 16-Day L3 Global 
250m SIN Grid 

Feb. 28–Oct. 3, 
2013–2021 

From Keith Weber, ISU 

 
3.2 Data Processing 
After acquiring Landsat 8 OLI scenes, the team used TerrSet to import and atmospherically correct the 
Collection 2 Level-1 data into reflectance data using the cosine approximation model (COST). The TerrSet 
VegIndex module provided Normalized Difference Vegetation Index (NDVI) while the ImageCalculator 
module provided Normalized Difference Moisture Index (NDMI) rasters for each combination of same-day 
Landsat 8 OLI scenes (Equations B1 & B2). Following this, the team shifted processing to ArcGIS Pro to 
remove clouds from corrected NDMI and NDVI rasters. The QA-PIXEL band served as a mask to remove 
pixels with quality assurance issues (e.g., cloud contamination) from further processing. Each NDVI and 
NDMI date-specific imagery pair was then mosaiced to create a single, cloud-free raster image by date using 
Python scripts for the ArcGIS Pro ‘Times’ and ‘Mosaic’ geoprocessing tools. Mosaics were then batch-
projected to WKID 102039 and clipped to the study area.  
 
Regular time intervals were required to conduct a time series analysis using NDVI, but heavy spring cloud 
cover prevented the team from using Landsat’s 16-day return interval imagery. The team created composite 
Landsat/MODIS NDVI images for the missing dates. The team resampled MODIS NDVI to 30m to match 
Landsat’s resolution. Due to time constraints, composites were only created for 2015 and 2016. All MODIS 
and Landsat images within 32 days of the missing dates were included in calculations for the composite 
images. The team used a weighted average so that images nearest the missing date had the greatest influence 
on the composite image. For example, the team created a composite image for 8/14/2015 using images from 
8/12/2015 (MODIS) at a weight of 16/18 and from 7/29/2015 (Landsat) at a weight of 2/18.  
 
The team generated a highest probability landcover raster for all of Idaho for Mar. 1–Sep. 30, 2021 in Google 
Earth Engine (GEE) using the Dynamic World 10m V1 dataset. This classified product was clipped to the 
study area in GEE before being exported as a GeoTIFF in EPSG 5070 (NAD83/Conus Albers) and 
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imported to ArcGIS Pro. EDDI data was in ASCII format with an unknown spatial reference system 
presumed to be WGS 1984 and therefore the team defined it as such and reprojected it into WKID 102039. 
Then the team reprojected the ESI data (GeoTIFFs format) to WKID 102039. Both EDDI and ESI raster 
datasets were then batch-clipped in ArcGIS Pro.  
 
Next, using ArcGIS Pro’s Raster to Point tool, the team generated centroid points of EDDI pixels as 
extraction points for drought indicator data throughout the analysis phase. EDDI was the dataset with the 
coarsest spatial resolution (13km), therefore, the team based the extraction points on EDDI’s pixel size to 
avoid oversampling the same EDDI pixel during analysis. This process generated 165 features for extraction. 
The team sampled the weekly EDDI and ESI rasters at these points for each year in the study period, before 
exporting these tables as CSV files for trend and time-series analysis in Microsoft Excel and R Studio. The 
team also extracted Dynamic World information to distinguish landcover classes. 
 
For the wildfire hazard modeling phase of the analysis, the team sliced the HFD by year for each year in the 
study period, creating a fire frequency layer for each year in the study period (e.g., the 2019 fire frequency 
layer contained all fires from 1950-2019 while the 2020 fire frequency layer contained all fires form 1950-
2020). Then, the team calculated burn density within each subwatershed by dividing the sum of historical 
acres burned by the subwatershed area. These yearly feature layers were then rasterized at 30 m pixels for use 
in the model. WUI and topography data were projected to WKID 102039 and clipped. Based on IDL’s 
specified categorization scheme, the team classified each vegetation type in the LANDFIRE dataset as one of 
6 categories: grass-tree, grass-shrub, shrub, shrub-tree (including pinyon and juniper), and tree.  
 
Using ArcGIS Pro’s Resample tool with bilinear resampling, the team resampled EDDI and ESI weekly 
rasters to 30 m resolution to match other model datasets. Bilinear interpolation calculated the resampled value 
for each pixel based on the distance-weighted average of the surrounding 4 pixels. The Cell Statistics tool in 
ArcGIS Pro allowed the team to then extract median fire season (6/1–9/30) EDDI and ESI in the study area 
for each year in the study period. The team also used Cell Statistics to generate median growing (3/1–6/1) 
and fire season NDVI from the composite Landsat/MODIS NDVI dataset. With these median NDVI 
rasters from each season, using the Raster Calculator, the team generated an NDVI-difference raster by 
subtracting the median fire season NDVI from the median growing season NDVI. 
 
All wildfire hazard model datasets required reclassification to meet the model’s categorization paradigm. The 
team reclassified historic fires, slope degrees, aspect, WUI, and vegetation class according to the values and 
ranges in Table 3. The team based the reclassification on IDL’s existing wildfire hazard model scheme.  
 
Table 3 
Reclassification scheme for wildfire hazard model variables.  

Variable 0 1 2 3 4 5 6 
Slope (degrees) -  0–10  10–20  > 20  - - - 
Aspect (degrees) Flat N (0–45, 315–

360) 
E (45–135) S, W (135–315) - - - 

Burn density 
(acres/acre) 

0 0–0.5 0.5–1.0 > 1.0 - - - 

WUI - Is not WUI - Is WUI - - - 
Vegetation Class - Grass Grass-Tree Grass-Shrub Shrub Shrub

-Tree 
Tree 

Column headers indicate values used in the model based on the given continuous or categorical range. N 
refers to aspect North, E to aspect East, S to aspect South, and W to aspect West. 
 
 
The reclassification values for EDDI, ESI, and NDVI difference are shown in table 4. The team based the 
drought reclassification values on the US Drought Monitor’s Drought Classification percentile scheme: 2nd, 
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5th, 10th, 20th, 30th, 70th, 80th, 90th, 95th, and 98th percentiles. The percentiles correspond to established 
categories: Exceptional Wetness (EW4), Extreme Wetness (EW3), Severe Wetness (EW2), Moderate Wetness 
(EW1), Abnormally Wet (EW0), Abnormally Dry (ED0), Moderate Drought (ED1), Severe Drought (ED2), 
Extreme Drought (ED3), and Exceptional Drought (ED4), respectively. 
 
Table 4 
Reclassification scheme for wildfire hazard model variables.  
Variable -4 -3 -2 -1 0 1 2 3 4 
EDDI ≤ -

2.054 
-2.054– 
-1.926 

-1.926– 
-1.712 

-1.712–
-1.284 

-1.284– 
1.284 

1.284–
1.712 

1.712– 
1.926 

1.926–
2.054 

≥ 2.054 

ESI 3.5– 
3.36 

3.36– 
3.15 

3.15– 
2.8 

2.8– 
2.1 

2.1– -
2.1 

-2.1– -
2.8 

-2.8– -
3.15 

-3.15– 
-3.36 

-3.36– -
3.5 

NDVI-
difference 

-1.4– -
1.25 

-1.245 -
1.1 

-1.1– -
0.8 

-0.8– -
0.2 

-0.20– 
0.4 

0.4– 1 1.0– 
1.3 

1.30– 
1.45 

1.45– 
1.60 

Column headers indicate values used in the model based on the given continuous range. 
 
3.3 Data Analysis 
3.3.1 Drought Indicator Analysis 
The team assessed EDDI and ESI via time series analysis stratified by landcover. The team also compiled 
MODIS NDVI into a time series. The full time series as well as individual years were investigated. The team 
experimented with a variety of lag periods, moving average, and visualization options to best explore and 
display trends in drought data over the study period. The team used Microsoft Excel for initial data 
organization and visualization. In addition, R Studio (packages including: forecast, ggplot2, tidyverse, and 
lubridate) offered robust data manipulation, analysis, and visualization capabilities. The team explored various 
statistical analysis methods to determine if EDDI or ESI showed any forcing influence on NDVI. See Figure 
C1 in Appendix C for a flowchart of Drought Indicator Analysis. 
 
3.3.2 Wildfire Hazard Modeling 
Upon reclassifying continuous data into categorical fire hazard-weighted values, the team generated wildfire 
hazard models for each year in the study period. For each year the model incorporated: historical burn 
density, WUI data, slope degrees, aspect, median fire season EDDI or ESI (only one drought indicator was 
used in any given model due to high intercorrelation), and vegetation class. Select model years included 
spring-summer NDVI difference. The sum of the reclassified weights, generated with ArcGIS Pro’s Raster 
Calculator tool, served as the overall wildfire hazard score for a given pixel. The categorization of hazard 
levels was based on IDL’s technique of finding Jenk’s natural breaks in the data. Further optimization by the 
team allowed for comparison across years, maps, and models: percentile breaks determined cutoffs for 
ascending hazard levels. Type I and Type II models both served as prototypes for potential categorical 
breakpoint paradigms. The team calculated a pixel’s ‘percentile’ by taking its hazard model actual score 
divided by the maximum possible hazard score for that model. This way, categorical breaks were decided not 
based on the raw hazard score (which changed frequently between models), but the percentage of the 
maximum hazard score, allowing for easier comparisons. Type I models utilized the following percentile 
breaks for hazard score: 0–27%, 27–46%, 46–64%, 64–77%, and 77–100%. Type II models used these 
values: 0–27%, 27–46%, 46–55%, 55–77%, and 77–100%.  
 
Ultimately, the team generated many model iterations for every year in the study period. Type I and Type II 
models offered alternative breakpoints for the following models in each year: base model, consisting only of 
IDL’s variables (updated with corrected and/or more recent data); ESI-enhanced; EDDI-enhanced; and 
spring-summer NDVI difference-enhanced. One limitation or problem encountered early in the study was 
related to the WUI data.  These data suffered from limitations, including inconsistent WUI definitions 
between counties and indications of WUI using simple point features as opposed to rasters or polygons.  
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The team assessed accuracy in a variety of exploratory ways. One method for accuracy assessment involved 
calculating the number of true burn pixels in the model year that fell within the highest two hazard categories 
(Moderate-High and High). This “True-Positive” percentage gave an indication of how many of the highest 
risk pixels actually burned in a given year. The team defined “False-Positives” as Moderate-High and High 
fire hazard pixels that did not actually burn in the given year; “True-Negatives” as Low, Moderate-Low, and 
Moderate fire hazard pixels that did not burn; and “False-Negatives” as Low, Moderate-Low, and Moderate 
fire hazard pixels that did burn. As the team cycled through iterations of models, maximizing “True-
Positives” while attempting to limit “False-Positives” served as a guiding principle. The team developed 
another experimental accuracy assessment protocol in consultation with partners that assessed only true burn 
pixels. For true burn pixels, the team extracted the pixel’s classified hazard category from the model to 
determine the distribution of categories. Models exhibiting higher percentages of high-hazard true burn pixels 
were considered to have outperformed those with lower percentages of high-hazard true burn pixels. See 
Figure C2 for a flowchart of Wildfire Hazard Modeling analysis.  
  
4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 Drought Indicator Analysis 
Time series data on drought indicators showed spikes in the 8-week moving average of EDDI preceding the 
fire seasons with largest area burned, 2015 and 2021(Figure 2). EDDI values above 1.28 cross the threshold 
into the official drought category for moderate drought, EDDI values above 1.71 cross the threshold into 
severe drought, and values above 1.93 cross the threshold into extreme drought. All values above 0 indicate 
anomalous evaporative demand.  

 
Figure 2: Eight week moving average of 4-week median EDDI data for the study area in forested landcover. 

Years with the largest area burned (2015, 2021) are highlighted with orange.   
 
By this metric, median EDDI across all pixels in the study area fell into the moderate drought category in 
2015, though it did approach severe drought. In 2021, median EDDI fell squarely in extreme drought and 
approached exceptional. These values represented the median across all pixels in the study area; specific 
regions of the study area did maintain other drought categorizations throughout portions of 2015 and 2021 
fire seasons.  
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Figure 3: 4- and 8-week moving average of 4-week median EDDI in study area across study period in forested 
(green) and rangeland (orange) landcover for 2015 and 2016. 

 
Looking specifically at case-study years of 2015 (dry, high fire frequency and area burned year) and 2016 
(mesic, low fire frequency year) gave indication of the EDDI dynamics within individual years (Figure 3). The 
2015’s drought stress becomes apparent when considering its consistent moving average values above 0, and 
often reaching the maximum value of 2. Meanwhile, in 2016 both 4- and 8-week moving averages displayed a 
tendency to hover around 0 and even dip below that median threshold, especially in peak fire season. 
Overlaying NDVI and EDDI time series data for the entire study period showed interactions between these 
variables (Figure D1, Appendix D). Autocorrelation analysis of each of these time series (Figure D2, 
Appendix D) indicated that NDVI was highly autocorrelated (indicating periodicity) while EDDI did not 
show signs of autocorrelation. The team attempted basic cross-correlation analysis (Figure D3, Appendix D), 
hoping to discover a correlation at specific lag periods. Significant correlations did exist but periodicity and 
autocorrelation of NDVI prohibited clear conclusions from being drawn.  
 
NDVI difference in case study years 2015 and 2016 highlighted the potential utility of this fuel load and 
dryness proxy (Figure 4). Comparing the histograms of these raster layers showed that in years without 
significant drought (e.g., 2016), NDVI difference largely remained clustered around 0. This indicates minimal 
changes to NDVI between growing and fire season for the vast majority of pixels. In contrast, 2015 showed a 
similar peak but a positive skew with many values exhibiting large NDVI declines between seasons. The team 
interpreted this as evidence supporting the idea that in drought pressure years NDVI loss — and consequent 
drying of fuels — is greater than in temperate years. One factor that may have affected these NDVI 
difference values could be NDVI loss from fires. If a fire occurred early enough in the year, or if cloud cover 
reduced the number of available NDVI rasters throughout fire season, the median value might pick up the 
severe drop off in NDVI following actual fire. Based on the team’s exploration of several fires in 2015, 
evidence for this possible source of error was not apparent. Additionally, though 2015 was a big fire year, 
only 4.21% of the study area burned, a total insufficient to account for the disparity seen in the histograms.  
 
  a. 
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                         b.  

 
 
Figure 4: Histograms for NDVI difference (growing season NDVI – fire season NDVI) rasters of the study 
area from 2015 and 2016, including all landcover types. One standard deviation denoted with grey vertical 
bars, median denoted with purple vertical bar, mean indicated with blue vertical bar. Normal distribution 
indicated with dark grey curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.2 Wildfire Hazard Modeling 
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Figure 5: Original, EDDI, ESI, and NDVI-difference fire hazard models for 2015 (top) and 2016 (bottom). 

Black polygons represent fires from that year (2016 had very few and very small fires - notice small black dots 
in lower left and lower right of study area). 

 
The team completed many iterations of the wildfire hazard model, searching for visual differences and testing 
accuracy using aforementioned methods. The years 2015 and 2016 proved valuable case study years, as 2015 
was dry and fire prone, while 2016 was temperate and suffered few fires. Therefore, the team selected these 
years to display model results. Figure 5 shows a panel of model outputs highlighting the original, EDDI-
enhanced, ESI-enhanced, and NDVI difference-enhanced models. The team noticed a similarity between 
base models in the two case study years, indicating insufficient dynamic wildfire hazard prediction capability. 
For drought-enhanced models, the difference between the case study years often proved apparent, potentially 
capturing real differences in wildfire hazard between years. The team found that model performance in a dry 
year (2015) exceeded the performance in a wet year (2016), when performance is characterized in terms of 
greatest proportion of true positive pixels, though these models at times suffered from outsized percentages 
of false positives. The EDDI model and the original model performed better than the NDVI and ESI model 
for 2015 in terms of true positives, though the NDVI and ESI models exhibited much higher true negative 
percentages. 
 
This indicated that while the original and EDDI models are capturing more true burn pixels, this may have 
been due to general over-prediction of high hazard areas. The original models for 2015 and 2016 scored the 
two highest False Positive percentages of all models tested. In 2016, the NDVI model performed best in True 
Negative percentage by over 4%, while all models showed True Positive percentages that rounded to zero. 
Fire susceptibility and occurrence accuracy proved tricky; “low susceptibility” areas may burn because ignition 
sources were present, while areas at very high risk might be spared due to lack of ignition. A visualization of 
the alternative, burn-area only accuracy assessment can be found in Figure 6. This method of measuring 
accuracy does not take false positives, or over-prediction, into account.  
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Table 5 
Accuracy statistics for models in Figure 5. 

Model True Positive % True Negative % False Positive % False Negative % 
2015 Original 3.7% 23.8% 72.0% 0.5% 
2015 EDDI 3.5% 25.5% 70.2% 0.7% 
2015 ESI 2.9% 40.5% 55.3% 1.4% 
2015 NDVI 3.0% 41.3% 54.7% 1.3% 
2016 Original 0.0% 23.8% 76.2% 0.0% 
2016 EDDI 0.0% 42.2% 57.8% 0.0% 
2016 ESI 0.0% 42.2% 57.8% 0.0% 
2016 NDVI 0.0% 46.7% 53.2% 0.0% 

True Positive% and False Negative% for 2016 models rounded to 0.0% at one decimal place. 
 

Figure 6: Category distribution of burned acres from models in 2015 and 2016. 
 
4.2 Future Work 
The primary future direction identified by the Idaho Wildfires Term I team revolves around wildfire hazard 
model improvement. The existing base model, along with all enhanced iterations, could serve as a useful 
launch point for models offering better prediction of fire hazard areas with less of a propensity for 
overprediction. In addition to improved accuracy, a critical feature of the optimized model must be the 
capacity to run the model in near real time using the most recent available drought and NDVI data. EDDI 
and ESI are available within five days while Landsat imagery is often available within hours of acquisition. 
This would greatly enhance the model's usefulness and practicality.  
 
The team recognized dynamic WUI, landcover, and vegetation class data as a key area for possible 
improvement of the model. As it stands, the best available WUI data (not obtained until week nine of the 
initial ten-week term) were based on the 2020 Census but were applied back to the 2013 model. For 
landcover and vegetation class, especially in the context of vegetation incineration and landscape degradation 
in the aftermath of wildfire, using static data across all years of the model may have limited these variables’ 
effectiveness at differentiating hazard levels between years. Dynamic World and LANDFIRE data products 
are available across different years, and incorporating a dynamic approach to these variables could improve 
model accuracy. In addition, the breakpoint thresholds for fire hazard categories in the model were somewhat 
arbitrary. The team attempted to set reasonable breakpoints based on IDL’s existing Jenk’s natural breaks 
scheme and tweaked the scheme to utilize percentages rather than raw values for comparison purposes, but 
further optimization of breakpoints could improve model performance. 
 
The team saw significant gaps in model performance in wet/low fire years and dry/high fire years. This was 
not inconsistent with established wildfire modeling literature, where it is common to find multiple versions of 
models: one for wet years and one for dry years (Chuvieco et al., 2010). Upon consultation with partners, the 
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team gained a crucial insight, though too late in the term to capitalize on it: because of biophysical differences 
in vegetation response to drought between forests and rangeland, these landcover classes ought to be 
differentiated for drought indicator application. Rangeland, dominated by grasses and shrubs, could see fuel 
drying and increased fire hazard on a much shorter time scale than forests. Partners suggest time scales of 
weeks-to-months for rangeland and 2-5 years for forest drought input into the model. Furthermore, a more 
robust measure of vegetation growth and decline could be generated using NDVI anomaly. Comparing 
NDVI in the model year to the mean ten-year NDVI would indicate departures from typical biomass cycle, 
potentially highlighting problematic fuel dynamics and providing utility in the model.   
 
The team hoped to conduct robust time series analysis, including cross-correlation analysis, to compare 
drought indicators EDDI and ESI to known proxies of plant vitality like NDVI and NDMI. This could 
potentially unlock clues as to forcing influence between drought and plant health, solidifying the utility of 
using drought indicators like EDDI and ESI in wildfire hazard modeling. While the team performed some 
analysis and visualization of time series data, periodicity complications and time limited the scope. 
Additionally, while the analog wildfire hazard model was most practical for ensuring completion during the 
first term and adoption by partners, a machine learning (ML) classification approach could produce improved 
results. Experimenting with variable importance and various ML classifiers, partitioning known fire pixels in a 
given year into testing and training data, and running these algorithms with existing drought, vegetation, 
landcover, and topography data as independent variables could generate highly effective and modern tools for 
partners to best prioritize limited fire mitigation resources. 
 
Another area for future optimization could be the inclusion of ECOsystem Spaceborne Thermal Radiometer 
Experiment on Space Station (ECOSTRESS) data for ESI at 30m resolution, available from 7/9/2018 to 
present. It would be interesting to compare both drought indicator time series results and wildfire hazard 
model performance with those from SERVIR Global’s 5km resolution ESI data, used in this study. Due to 
the planned retirement of the Terra and Aqua satellites which house the MODIS sensors, the incorporation 
of ET data from this newer data source would ensure long-term applicability and practicability of including 
ET-derived drought indicators in Idaho’s state drought and wildfire mitigation protocols.  
 
5. Conclusions 
The team found that spikes in EDDI up to the 1.5 threshold occurred during the years with the most area 
burned- 2015 and 2021. Similar patterns did not take place during mesic, low-fire years. Furthermore, the 
team established that the difference between median growing season and fire season NDVI followed 
different distributions in high fire years and low fire years, suggesting that the phenomenon described by Li et 
al. (2020) for the Owyhee Basin in Southwestern Idaho could hold in other regions, including the study area. 
The team noticed that this effect predominantly occurred in rangeland, possibly due to forests’ generally high 
NDVI levels and resilience in the face of short-scale drought pressures. This added to the importance of 
following through on the insight that forest and rangeland ought to be treated differently in the model. These 
landcovers could reveal greater insights treated separately, especially if considered over different time 
windows, though different drought indicators might also offer benefits.   
 
The wildfire hazard model seemed to perform best during years with elevated fire occurrence and burned 
area, like 2015. The team took this as a sign that in general, the static, unchanging nature of many of the input 
variables established a baseline hazard score for each pixel across all models, limiting differentiation of fire 
hazard across years. The imperfect nature of the accuracy assessments performed on these models might also 
have contributed to the general increased performance in high fire years. Counting True Positives without 
adjustments for overprediction, meant that the highest accuracies were observed when the dependent, 
predicted variable of fire occurrence was at its highest. Finding alternative model construction schema or 
alternative variables that increase True Positives while maintaining or, ideally, decreasing False Positives 
should be a goal for the second term of the project. A ML classification approach may assist in creating a 
more dynamic and accurate model, taking into account all variables’ weights on a yearly, rather than a static, 
basis. 
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Clear wet year/dry year performance differences and modest differences between EDDI models and ESI 
models emphasize the opportunity to improve accuracy and usefulness of the model. Leveraging differences 
in EDDI and ESI’s underlying properties could help. EDDI, which assumes non-moisture limited conditions 
and provides potential ET for a system with sufficient water, is driven primarily by solar radiation, wind, 
humidity, and cloud cover. Because it does not account for real ET, it may offer better observation of hot, 
dry conditions when precipitation or other sources of water are limited, like in 2015 and 2021. ESI, on the 
other hand, estimates real ET based on actual moisture conditions. EDDI and ESI track together in non-
moisture limited conditions; however, when moisture is limited, continued dry conditions will force EDDI to 
continue to rise even as real ET and ESI level off and begin to decline. The team hypothesized that these 
differences might have explained some discrepancies in accuracy for EDDI and ESI in wet and dry years.   
 
Ultimately, modeling wildfire occurrence and hazard, and especially assessing accuracy of fire hazard models, 
remains elusive due in part to the probabilistic nature of fire – even the highest risk areas burn only when 
sporadic and unpredictable ignition sources present themselves. This likely contributed to increased accuracy 
when fire did occur, and certainly complicated efforts at quantifying model performance. The team finished 
the term excited to pass off this work to another motivated Idaho Wildfires team to further a practical, useful 
wildfire hazard product that partners can continue to use and improve.  
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7. Glossary 
Arid region – A distinct area that receives less than 10 inches of precipitation per year 
Biomass – Renewable organic material that comes from plants and animals 
E0 – Evaporative demand; represents the potential ET in a non-surface moisture limited system 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
Ecoregion – An ecologically and geographically defined area which contains characteristic, geographically 
distinct assemblages of natural communities and species 
EDDI – Evaporative Demand Drought Index; indicates the anomaly of evaporative demand (E0) summed 
over a specified time period and ranked in comparison to previous years before being incorporated into an 
inverse normal approximation. 
ESI – Evaporative Stress Index; indicates the anomaly of ET composited over a specified time window 
ET – evapotranspiration; the sum of evaporation from the land surface plus transpiration from plants 
Landcover – The physical land type, e.g., forests, wetlands, impervious surfaces, agriculture, and other land 
and water types 
Landsat – A series of Earth-observing satellite missions managed jointly by NASA and the U.S. Geological 
Survey 
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Mesic – Containing a moderate amount of moisture 
MODIS – Moderate Resolution Imaging Spectroradiometer; An instrument aboard NASA’s Terra and Aqua 
satellites 
NDMI – Normalized Difference Moisture Index; A spectral vegetation index using near infrared and 
shortwave infrared wavelengths to estimate vegetation moisture  
NDVI – Normalized Difference Vegetation Index; A spectral vegetation index using near infrared and red 
wavelengths to estimate vegetation photosynthetic activity. 
WUI – Wildland Urban Interface is an area where developed lands interact with undeveloped lands and 
includes the infrastructure and natural resources communities rely on for existence.  
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9. Appendices 
 

Appendix A 
 

 
Figure A1. Linear regression of annual fire frequency across Idaho between 1950 and 2021 (r2 = 0.5). It is 
likely more fires occurred than reported in the Historic Fires Database and that more data is missing from 
earlier study dates. 
 
 
 

 
Figure A2. Linear regression of the annual total area burned across Idaho between 1950 and 2021 (r2 = 0.23). 
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Figure A3. Annual mean and median area burned across Idaho from 1950 to 2021. The increasing disparity 
between the mean and median indicates higher incidence of mega fires in recent years. 
 
 
 

  
Figure A4. Annual fire frequency in the study area with key high-fire years 2015, 2017, 2021 highlighted with 
green circles.  
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Figure A5. Annual burned area in the study area with key high-fire years 2015, 2017, 2021 highlighted with 
green circles. 
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Appendix B 
 
 

                                𝑁𝐷𝑉𝐼  ൌ  
ሺேூோିோ௘ௗሻ

ሺேூோାோ௘ௗሻ
                      (B1) 

Equation B1: Normalized Difference Vegetation Index (NDVI) equation. NIR refers to the Near Infrared 
band value (Band 5, 0.85-0.88 µm) and Red refers to the visible red band value (Band 4, 0.64-0.67 µm) of 
NASA’s Landsat 8/9 OLI sensor. ("Normalized Difference Vegetation Index,” n.d.; “What are the band 
designations for the Landsat Satellites?,” n.d.) 
 
 

                          𝑁𝐷𝑀𝐼  ൌ  
ሺேூோିௌௐூோሻ

ሺேூோାௌௐூோሻ
                    (B2) 

Equation B2: Normalized Difference Moisture Index (NDMI) equation. NIR refers to the Near Infrared band 
value (Band 5, 0.85-0.88 µm) and SWIR refers to the Short-wave Infrared band (Band 6, 1.57-1.65 µm) of 
NASA's Landsat 8/9 OLI sensor. ("Normalized Difference Moisture Index,” n.d.; “What are the band 
designations for the Landsat Satellites?,” n.d.) 
 
 

           𝐸𝐷𝐷𝐼  ൌ  𝑊  െ
஼బା஼భௐ ା ஼మௐమ

ଵ ାௗభௐ ା ௗమௐమ ାௗయௐయ         (B3)  

            (a) 

                                 𝑃൫𝐸଴೔൯  ൌ  
௜ ି ଴.ଷଷ

௡ ା ଴.ଷଷᇲ
                       (b) 

Equations B3, B3a, B3b: Evaporative Demand Drought Index (EDDI) equation, including associated variables, 
reproduced from Hobbins et al., 2016. P(E0i) indicates the probability of a given sum of E0 over a given time 
period, i indicates the rank of E0 over the time series, and n is the period in years. EDDI is then calculated 
from the inverse normal approximation with following constants: C0 = 2.515517; C1 = 0.802853, C2 = 
0.010328; d1 = 1.432788; d2 = 0.189269; d3 = 0.001308 (Hobbins et al., 2016). 
 

𝐸𝑆𝐼  
 

                                      𝑓ோா் ൌ
ா்ௗ

ா்௢ௗ
                                 (B4)   

 

𝑣ሺ𝑑,𝑦௞ , 𝑖, 𝑗ሻᇱ ൌ
⟨௩ሺௗ,௬ೖ,௜,௝ሻ⟩ି

భ
೙
∑ ⟨௩ሺௗ,௬ೖ,௜,௝ሻ⟩ ೖస೙
 ೖసభ  

ఙሺௗ,௜,௝ሻ
     (a) 

Equation B4, B4a: Evaporative Stress Index (ESI) values represent standardized anomalies (computed as in 
(a)) in fRET, normalized by reference ET. fRET simply represents relative ET (the actual-to-reference ET ratio: 
ETd is the actual daily ET and ETod refers to the hourly reference, time-integrated ET to a daily value). In (a), 
⟨𝑣ሺ𝑑,𝑦௞ , 𝑖, 𝑗ሻ⟩ is the fRET composite for day d, year y, and i,j grid location,𝑣ሺ𝑑,𝑦, 𝑖, 𝑗ሻ is the value on day d, n is 
the number of years in the period of record, and 𝜎ሺ𝑑, 𝑖, 𝑗ሻ is the standard deviation in v for that compositing 
interval- essentially turning fRET into a z-score. (Yang et al., 2018). 
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Appendix C 
 

 
Figure C1. Flowchart of Drought Indicator Analysis performed during Term 1 of Idaho Wildfires. 

 
 
 

 
Figure C2: Flowchart of Wildfire Hazard Modeling performed during Term 1 of Idaho Wildfires. 
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Appendix D 
 

 
Figure D1: Time series plot of median NDVI (green) and median EDDI (blue) over the study period (2013-
2021). Both variables have been scaled to a range of 0-1 for ease of comparison. 
 
 

Figure D2: Autocorrelation plots from R Studio showing 2013-2021 median EDDI and NDVI 
autocorrelation. Lag time units of 2 weeks (each lag unit of 1 is a 2 week period). ACF indicates correlation of 
the dataset with itself at the indicated lag time. Horizontal dashed blue lines indicate the 95% confidence 
interval for correlation. Notice clear autocorrelation in NDVI over the study period – this prevented adequate 
cross-correlation analysis between median EDDI and median NDVI.  
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Figure D3: Cross-correlation plot from R Studio showing 2013-2021 median EDDI and NDVI. Lag time units 
of 2 weeks (each lag unit of 1 is a 2-week period). ACF indicates correlation of the EDDI at a given lag time 
with NDVI at time 0. Horizontal dashed blue lines indicate the 95% confidence interval for correlation. Due 
to autocorrelated nature of NDVI data, this cross-correlation is flawed and was not able to be used by the 
team.  


