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1. Abstract 
Disturbances and landcover change in pinyon-juniper and sagebrush ecosystems are exacerbated by 
environmental conditions such as variability in climate characteristics. Our DEVELOP team partnered with 
the National Park Service (NPS) in Colorado National Monument and the Bureau of Land Management 
(BLM) in McInnis Canyons and Dominguez-Escalante National Conservation Areas to investigate 
disturbances to land cover. NPS partners were interested in identifying areas at risk of pinyon-juniper die-off 
or encroachment by invasive species. The BLM partners prioritized identifying areas suitable for fire 
reduction/prevention treatment. To address these concerns, we forecasted landcover change in the Grand 
Valley region of Colorado using NASA Earth observation data from Landsat 5 Thematic Mapper (TM), 
Landsat 7 Enhanced Thematic Mapper (ETM+), Landsat 8 Operational Land Imager (OLI), and Moderate 
Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua. We collected and analyzed these 
data in conjunction with Term I of this project. We found that the primary drivers of forecasted landcover 
change in the study area were aspect and elevation. Our forecasted landcover change maps, created using the 
Idrisi TerrSet Land Change Modeler, addressed the needs of our partners by showing potential habitat 
suitability trends, which will inform management planning. Forecasted land cover maps indicated that by 
2040, ecosystems within partner management areas will likely see tree encroachment on shrublands. 

Key Terms 
ecology, land cover change, remote sensing, TerrSet LCM, Ips beetle, MODIS, Landsat, pinyon-juniper 
woodlands  
 

2. Introduction 
2.1 Background Information 
Pinyon-juniper woodlands (PJW) are the most prevalent forest type in the American Southwest (Shaw et al., 
2005). PJW provide several ecosystem services including wildlife habitat and watershed protection. Climate is 
an important driver of both the expansion and decline of PJW communities (Nielson, 2009). While decline of 
PJW is an issue due to the loss of ecosystem services and habitat, expansion of PJW is also of concern due to 
the negative effects of encroachment into other plant communities (Miller et al., 2019). More frequent fires in 
higher-density stands leave PJW and sagebrush habitats more susceptible to invasion by non-native species, 
which also leads to loss of ecosystem services and habitat (Grant-Hoffman & Plank, 2021). An increase in 
PJW mortality in recent years has been attributed to several disturbances — frequent stand-replacing fires, 
infestation by insects such as the Pinyon ips bark beetle (Ips confusus), and disease — which have been 
intensified due to stress from severe droughts (Nielson, 2009; Shaw et al., 2005). Climate variations will 
undoubtedly continue to affect PJW and sagebrush habitats; therefore, understanding climatic effects is 
critical for the preservation of these ecosystems. 
 
Several studies have used satellite data to create forecasted land cover maps, and these studies highlight the 
critical role ecological forecast maps can play in management decisions, especially in areas experiencing more 
severe impacts of climate change. For instance, the predictive maps created in Hasan et al. (2020), examining 
climate-forced land cover change in Bangladesh, revealed that dense forests would continue to degrade out to 
2029, and likely beyond, if effective management interventions were not carried out. The ability to accurately 
forecast ecological change is critical for informing environmental managers of threats to better preserve 
ecosystems, especially in an era of rapidly changing climate (Tulloch et al., 2020). 
 
The Grand Valley region was our area of interest, which is partially situated in Mesa County in western 
Colorado and partially in Grand County, Utah. We focused on the geography and the ecosystem of Colorado 
National Monument (CNM), McInnis Canyons National Conservation Area (MCNCA), and Dominguez-
Escalante National Conservation Area (DENCA; Figure 1). The historical component of our study explored 
data from 1985–2021. Meanwhile, forecasting of land surface cover change extended from the current time 
frame into the future up to 2040. 



 
 

  

Figure 1: The extent of our study area, including Colorado National Monument, McInnis Canyons National 
Conservation Area, and Dominguez-Escalante National Monuments  

The previous term of this project used NASA Earth observations to monitor and assess change in the extent 
of PJW and sagebrush habitat from 1985–2021. They measured the impacts of wildfire and beetle infestation 
on vegetation health and composition and assessed the effects of various vegetation treatments on the 
landscape. The team found that PJW expanded more than other types of land cover over the time period. 
They also concluded that higher severity fires on average had greater impacts on vegetation conditions than 
other areas without such disturbance, which could be useful for partners to prioritize these sites for post-fire 
rehabilitation. Finally, they found that pre-fire treatments were effective in slowing or stopping fires and aided 
in faster vegetation recovery post-fire (Powers et al., 2022). 

2.2 Project Partners & Objectives 
Our partners for this project were the National Park Service (NPS), Colorado National Monument (CNM), 
and the Bureau of Land Management, McInnis Canyons National Conservation Area (MCNCA), and 
Dominguez-Escalante National Conservation Area (DENCA). Both partners were interested in this project 
because of its potential to aid in management decisions and assess the effectiveness of treatments to mitigate 
increasingly frequent disturbances. NPS staff at CNM are interested in knowing what changes they can expect 
over time and not necessarily what action they can take to prevent it, whereas staff at the BLM are interested 
in taking action based on what they can expect. However, staff at CNM may consider monitoring and treating 
disturbances such as invasive plants to mitigate fire risk. Both partners frequently employ GIS and are seeking 
to incorporate GIS layers that include NASA satellite data alongside other datasets already in use to update 
their wildland resource and fire management practices.  
 
To support the management needs of our partners and preserve the PJW and their ecosystem services, this 
project addressed several objectives. The first was to forecast landcover changes in PJW and sagebrush 
habitat in relation to historical fires, fuels treatments, and potential beetle kill effects. Through forecasting we 



 
 

aimed to identify areas at high-risk of PJW tree mortality, areas that might recover well from vegetation 
management treatments, or what PJW encroachment into shrublands might look like. Our second objective 
was to evaluate the threat of land cover change (e.g., from bark beetle infestation and wildfire) based on 
environmental variables such as temperature, precipitation, and solar radiation. Finally, we verified possible 
beetle infestation locations identified in the previous term through field surveys by partner organizations in 
conjunction with high spatial resolution aerial and satellite imagery.  
 
3. Methodology 
3.1 Data Acquisition 
Our data included Earth observations (EO; Table 1), raw and processed GIS products from the Spring 2022 
term (Term I), partner-provided GIS layers, and publicly available ancillary datasets from various United 
States government agencies. Earth observation data sources included Landsat 5 Thematic Mapper (TM), 
Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), and Terra 
and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS). The spatial extent of our study area 
included path 36, row 33 of the Worldwide Reference System-2 (Figure 1). This scene is approximately 
180km by 185km and the temporal range of our study spanned the years 1985 to 2021, with forecasts to 
2040. Our partners at the Bureau of Land Management provided us with the Geodatabase of National 
Conservation Area Boundaries. 
 
Table 1  
NASA Earth observations data, parameters, and temporal coverage 

Platform & 
Sensor  

Parameters  
Temporal 
Coverage 

Data Source 

Landsat 5 TM 
Normalized Difference 
Vegetation Index (NDVI) 
products 

June – September 
1987–2012 

Raster datasets containing max 
value composite NDVI values 
created by the Term I team.  

Landsat 7 ETM+ NDVI products 

June – September 
1999–2020 

Raster datasets containing max 
value composite NDVI values 
created by the Term I team.  

Landsat 8 OLI NDVI products 

June – September 
2013–2020 

Raster datasets containing max 
value composite NDVI values 
created by the Term I team.  

Terra MODIS  NDVI products 
2000–2020 MODIS vegetation index 

products  

Aqua MODIS  NDVI products 
2002–2020 MODIS vegetation index 

products 

 



 
 

We included climate variables such as minimum and maximum monthly temperature as well as monthly 
cumulative precipitation in our analysis. These data came from the NOAA National Centers for 
Environmental Information in the form of multidimensional NetCDF files at a 5km resolution. Furthermore, 
average monthly horizontal solar irradiance data at a 4km resolution were downloaded from the National 
Solar Radiation Database as TIFF files. Land cover type and a summary of land cover change were also added 
to our analysis through the procurement of yearly tiff raster datasets from the Landscape Change Monitoring 
System (LCMS) database.  
  
3.1.1 Field Survey of Pinyon Pine Bark Beetle Mortality 
Term I of the Grand Valley Ecological Forecasting project created a dataset called Consecutive Vegetation 
Productivity Decline (CVPD; Figure A1). To generate this dataset, they used maximum NDVI. Intra-annual 
composite imagery was extracted for the study area during the growing season. They then performed an 
image difference for all images using a 1-year time step and estimated a threshold value for probable 
vegetation decline for each image using a moving average of the 5 years prior to a given “target” year. Pixel 
values in the annual NDVI composite having 1.96 standard deviations or more below the established five-
year mean threshold were considered probable true declines (outliers) and the resulting CVPD layer was 
reclassified accordingly in ArcGIS Pro. Term I aggregated annual data to arrive at a count for consecutive 
years of decline. They masked non-forest areas and known disturbances to produce a vegetation greenness 
decline persistence map that showed where a decline in NDVI persisted for 1–5 consecutive years (5 being 
the maximum encountered in this study). The probable outlier layer of the target year was subtracted from 
the baseline year to generate a vegetation disturbance map. Because tree mortality associated with bark beetle 
infestation results in loss of vegetation cover and loss of biomass production and because known 
disturbances (e.g., wildfire) were masked out, the assumption was made that areas with consecutive vegetation 
productivity decline could be attributed to Ips beetle infestation in the pinyon-juniper woodlands. To validate 
this assumption, our team (Term II) acquired ground verification data collected by our partners. We guided 
our partners in the collection process by providing them with shapefiles of georeferenced ground validation 
points that corresponded to the coordinates of locations showing at least two years of consecutive vegetation 
productivity decline as predicted by CVPD maps (Figure 2). Also included was a diagnostic survey utilizing 
Esri’s Survey123, in which we asked questions about the primary causes of disturbance and general ecosystem 
health. Teams of employees and citizen science volunteers went out into the field to assist in the collection 
and completion of the point surveys. The National Park Service biologists also selected and georeferenced 20 
additional points representing healthy, undisturbed pinyon-juniper woodlands. These points would be used as 
control points to juxtapose the areas of modeled decline.  
 



 
 

 
Figure 2: Points selected to send to partners for field validation in locations showing at least two years of 

consecutive vegetation productivity decline (CVPD) 
 
3.2 Data Processing 
3.2.1 File Preparation in ArcGIS and R 
We used a combination of geoprocessing tools within ArcGIS Pro software and R scripting for data 
preprocessing and data cleaning prior to analysis. We set the coordinate system for each raster dataset to USA 
Contiguous Albers Equal Area Conic map projection (WKID: 102039). Any raster dataset that did not 
initially have this spatial reference system was reprojected to have this system before any subsequent data 
extraction or analysis.  

The temporal range of the temperature and precipitation data spanned from 1985 to 2020. To subset these 
data in accordance with the temporal range of our analysis (1985–2020), we applied the Subset 
Multidimensional Raster tool in ArcGIS Pro. We then reprojected each raster layer and clipped it to the study 
area by using the Export Raster tool. The exported raster was a multidimensional NetCDF file which was 
then imported into the R Studio IDE for further preprocessing. The R package ncdf4, raster and tidyverse 
were used to extract and reshape the data in the form of a structured data frame. 



 
 

The datasets outlined in Table 2 are not multidimensional raster files, but rather single raster images. The 
average monthly Solar Horizontal Irradiance data was downloaded as twelve separate raster images, one for 
each month of the year. Similarly, thirty-four separate NDVI raster images were acquired from the data 
archive compiled by the Term-I. Each NDVI tiff raster corresponded to a specific year and contained the 
composite NDVI data from June to September for that year. We used the NDVI raster data that 
corresponded to the years of our study (1985–2020). Datasets in Table 2 were first reprojected using the 
Project Raster tool and clipped to the study area using the Extract by Mask tool. The data for each point 
within the study area were then acquired using the Extract Raster Values to Point tool. This resulted in a 
point layer and a corresponding attribute table which we then exported as a comma-separated values (csv) file 
using the Export Table tool. The csv files were then imported into R Studio and added to the data frame 
containing temperature and precipitation data.  

Table 2 
Yearly and monthly non-multidimensional raster datasets 

Dataset Parameters  
Temporal 
Coverage 

Data Source 
Earth Observation 

Sources 

NDVI max 
value 
composites 
computed 
from 
Landsat 5 
TM, Landsat 
7 ETM+ and 
Landsat 8 
OLI 

Spectral 
vegetation 
indices in the 
form of 
Normalized 
Difference 
Vegetation 
Index (NDVI) 
during June to 
September 

1986–2020 Raster datasets 
containing max value 
composite NDVI values 
created by the Term-I 
team.  

Landsat 5 TM, Landsat 7 
ETM+ and Landsat 8 
OLI 

 

 

 

National 
Elevation 
Dataset  

Elevation in 
meters 

Elevation is 
assumed to 
be constant 
from 1985–
2020 

GIS Training and 
Research Center at 
Idaho State University 
and USGS  

Light Detection and 
Ranging (LiDAR)  

Shuttle 
Radar 
Topography 
Mission 
(SRTM) 

Aspect 
measured in 
positive integer 
degrees from 0 
to 360 degrees  

Aspect is 
assumed to 
be constant 
from 1985–
2020 

GIS Training and 
Research Center at 
Idaho State University 
and USGS 

SRTM 

 

Solar 
Horizontal 
Irradiance  

Average direct 
normal solar 
irradiance 

1987–2020 National Solar Radiation 
Database 

TERRA MODIS and 
AQUA MODIS 

 
The values extracted from each raster dataset were combined into a single data frame. Each column of this 
data frame represented data recorded for a specific month and the rows represented specific coordinates 



 
 

within the study area and the year when the data was collected at that point and the yearly composite NDVI 
specific to that point. Data collected spatially across all the coordinates within the study area, between 1987 
and 2020, resulted in a total of 49,368 spatially distinct observations. 
 
3.2.2 File Preparation in Idrisi TerrSet 
To prepare files for analysis in Idrisi TerrSet Land Change Modeler (LCM), we first had to ensure that all 
parameters were identical. Into TerrSet we imported raster files from the USDA Forest Service Landscape 
Change Monitoring System (LCMS) at five-year increments for the years of 1985–2020 and for the most 
important driver variables identified by mean decrease of root mean square error. Variables included: 
elevation, aspect, annual precipitation, maximum temperature (Tmax), and minimum temperature (Tmin). 
The images and raster datasets were co-registered for window size and spatial resolution. We used a simplified 
classification of the LCMS rasters of land cover types (Figure A2). This simplified classification condensed 
the specific classes into broader classes of either “Tree”, “Shrub”, “Grass&Forb”, or “Other” which enabled 
us to generalize the land cover changes sub-modeled within the LCM program (Figure 3).

 
Figure 3: Reclassified LCMS image from 2021. The original 15 classes were simplified to 4 broader land cover 

classes (See Figure A2 for class descriptions). 
 

3.2.3 Survey Results Processing 
The ground validation survey results automatically uploaded onto a Survey123 database, which was then 
exported as a shapefile with a descriptive attribute table. From this attribute table we derived whether or not 
there was bark beetle related disturbance and tree mortality at each of the locations. This information was 
distributed into a binary “beetle” or “no beetle” category and classified as “1” and “-1” respectively. Those 
values were then compared to the calculated pixel values of one or more years of consecutive vegetation 
productivity decline (CVPD) versus zero years (no decline). Survey results and descriptions that we used to 
classify a site as “beetle” included: active pinyon Ips beetle infestation, old beetle infestation, beetle killed 
trees, Ips killed pines. We then exported the tables into MS Excel for analysis.  
 
3.3 Data Analysis  
3.3.1 Identifying Important Driver Variables 



 
 

We used a machine learning approach to model NDVI variation within our study area in relation to the 
predictor variables. This approach enabled us to account for the non-linearity and the multidimensional 
nature of the data to derive reliable insights in relation to patterns influencing NDVI. Specifically, this 
approach allowed us to compute the importance of each predictor and rank them in order of their 
importance. The metric used for calculating variable importance was mean decrease of root mean square 
error. The general workflow involved dividing the dataset into training and test data (Figure 4). The training 
data contained data from 1987 up until 2013, whereas the test data contained data from 2014 to 2020. The R 
package CAST was used to train a Random Forest regressor on the training dataset. To preserve the spatio-
temporal structure of the data as well as to combat overfitting, target oriented cross-validation (TO-CV) was 
used instead of k-fold cross validation. TO-CV leaves out data points from certain coordinates across certain 
timesteps during the training process. The data left out were then used for model validation. The importance 
of each variable was computed on the training dataset and the model was validated using the test dataset. 
Model evaluation was a crucial step to check for overfitting and evaluate whether the variable importance 
measures computed for each predictor on the training dataset was reliable or not. 
 

 
Figure 4: The complete workflow outlining the method used for identifying the most important drivers of 

NDVI variation within the study area. The metric used for computing the importance of each variable was 
mean decrease of root mean square error. 

 
3.3.2 Idrisi TerrSet Land Change Modeler Analysis 
The variables with the highest importance were then used to create forecasted land cover maps analyzed 
using LCM. In LCM, we performed three change analyses to assess how different timespans of training data 
affect forecasted change. We used the following years of LCMS images for training: 1985, 2010, 2015, and 
2020. LCM uses an earlier image and contrasts it to a later image to assess change. We used 1985 as our 
earlier image for the three experiments and 2010, 2015, and 2020 as the latter in each successive iteration. Our 
reprojected and windowed elevation file was input as the elevation model file for the change analysis. The 
program then used the earlier image and later image in conjunction with the driver variables, elevation and 
aspect, to create the following transitions: Tree to Shrub, Tree to Grass&Forb, Shrub to Tree, Shrub to 
Grass&Forb, Grass&Forb to Tree, and Grass&Forb to Shrub. We then grouped all transitions into a single 
sub model to create transition potentials using a Multi-Layer Perceptron (MLP) neural network. Initial 
attempts using all five driver variables (elevation, aspect, Tmin, Tmax, and precipitation) caused the model to 
fail, possibly due to the background null values of the temperature and precipitation files or their multi-



 
 

layered characteristics. Because of this, we decided to run the model using only the elevation and aspect driver 
variables. 
 
For the 1985–2010 experiment, we created a change prediction for 2015 and 2020. The resulting forecasted 
land cover maps were then validated in TerrSet against the actual LCMS map for 2015 and 2020 using the 
Error Matrix tool. The Kappa value for our 2015 forecast was 0.81 and the value for the 2020 forecast was 
0.68, indicating that the model was accurately predicting actual land cover changes. We then ran a second 
validation test using the 1985–2015 imagery. When those training dates were used to forecast 2020, our 
Kappa value was 0.73. The 1985–2020 experiment was used for creating forecast maps, but we were unable 
to run a validation due to the lack of a post-2020 co-registered LCMS image. Forecasted land cover maps 
were then created for 2025, 2030 and 2040 for each of the experimental training timeframes (1985–2010, 
1985–2015, 1985–2020). All parameters for these models were kept the same as our validated forecasted land 
cover maps.  
 
3.3.3 Field Validation Results Analysis 
The data points obtained from the survey included 53 of 160 prescribed ground validation points and 20 
partner-selected healthy vegetation control points. The 107 prescribed ground validation points that were not 
surveyed were due to accessibility restrictions and were discarded from further processing. Only 2 of the 20 
partner selected control points were utilized in our final accuracy assessment as 18 of the points were located 
in a Null value location of the CVPD dataset. This gave us a total of 55 ground validation points distributed 
across the study area, with the majority of ground validation being conducted within Colorado National 
Monument. The accuracy of the consecutive vegetation productivity decline was calculated by dividing the 
pixels that showed 1 to 5 years of decline and ground validated beetle disturbance by the total number of 
validation points (see Equation 1). 
 

்௢௧௔௟ ௏௔௟௜ௗ௔௧௘ௗ ஽௘௖௟௜௡௘ ௉௜௫௘௟௦

்௢௧௔௟ ௏௔௟௜ௗ௔௧௜௢௡ ௉௜௫௘௟௦
⋅ 100 ൌ  % 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡       (1) 

      
 
4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 Important Drivers of Yearly NDVI Variation 
Elevation (approximate relative importance: 100) and aspect (approximate relative importance: 72) were 
identified to be the most important variables in relation to NDVI variation (Figure 5). This indicates that 
these are the most influential factors driving vegetation productivity in the study area. The type and amount 
of vegetation is highly variable across elevation and this result captured that pattern of variability. The 
influence of annual average Tmin (approximate relative importance: 32) and Tmax (approximate relative 
importance: 17) alongside annual average cumulative precipitation (approximate relative importance: 3) is 
relatively low in comparison while annual solar irradiance (approximate relative importance: 0) shows 
negligible importance compared to other variables (Figure 5). This could be a very coarse representation of 
the evolutionary history of the plants in the area, specifically from the context of environmental cues. The 
climate of the study area is mostly semi-arid and plants that have evolved to grow in dry conditions have an 
efficient water management strategy, which might explain why we did not see a high impact of precipitation 
on vegetation productivity. Similarly, the plants might rely on the minimum range of temperature more than 
the maximum range for plant productivity and growth. The results could also be due to the relatively coarse 
spatial representation of the weather data.  



 
 

 
 

Figure 5: The relative importance of each driver variable in the dataset in relation to the variation of yearly 
NDVI. Mean decrease of root mean square error was used to compute the importance of each variable. 

Elevation and Aspect are the most important driver variables i.e., having the most influence in relation to the 
variation to yearly NDVI whereas annual average solar irradiance has a negligible influence.  

 
4.1.2 Idrisi TerrSet LCM Analysis 
The forecasted land cover maps (Appendix C) created for the 1985–2010 experiment projected an increase in 
trees and a decrease in shrubs and grasses. For the 1985–2015 experiment, the trend was similar in both 
direction of conversion and scale, with the notable deviation that the land cover type “Grass & Forbs” 
showed a relatively large increase. The 1985–2020 experiment showed a steady decrease in trees conducive 
with the observed trends from 1990–2020. The consensus result across all three experiments was that the 
change of LCMS images between 2015–2020 caused an exaggerated shift in the forecasted land cover changes 
within the CNM, MCNCA and DENCA perimeters (Figures 6–8). This suggests a different pattern of land 
cover change in the last 5 years than that of the previous 30. These results also demonstrate the importance 
of the inclusion of the most current data due to the dramatic shifts that have been occurring in recent years. 
Without the inclusion of 2020 as a training year, we found that partners could expect to see an increase in 
trees and a decrease in shrublands. With the inclusion of 2020 as a training year for the forecast model, 
partners could expect to see a conversion of trees to shrublands within their perimeters. Based on these 
results, the model that included 2020 data appeared to provide a more realistic forecast because it accounts 
for the most recent changes in land cover within the study area.  



 
 

 
Figure 6: Variation in land cover attributed to “TREE” land cover type within partner perimeters between 

1990 and 2040 for all three forecasting experiments 

 

 
Figure 7: Variation in land cover attributed to “SHRUB” land cover type within partner perimeters between 

1990 and 2040 for all three forecasting experiments 



 
 

 
Figure 8: Variation in land cover attributed to “GRASS & FORBS” land cover type within partner perimeters 

between 1990 and 2040 for all three forecasting experiments 

 
4.1.3 Field Validation Results Analysis 
Results from our partner conducted survey indicated that 38 of the 55 acceptable ground validation points 
were positively attributed to beetle kill (Figure 9). This translates to a 69% level of agreement between the 
ground and test data when inferring that consecutive vegetation productivity decline is associated with bark 
beetle infestation. It is important to note that points where partners indicated signs of a beetle infestation do 
not necessarily mean that the whole ecosystem at those selected points was unhealthy. However, more often 
than not consecutive vegetation productivity decline suggests tree mortality was associated with active or past 
beetle infestation.  



 
 

 
Figure 9: Ground observations of points that were incorporated in the validation. Green points are locations 

that remote sensing accurately modeled decline. Red points are locations that remote sensing modeled 
decline, but had no signs of vegetation productivity decline or beetle infestation and had good overall forest 

ecosystem health.  

 
4.2 Limitations and Errors 
While driver variable analysis was able to account for the non-linearity, spatial and temporal autocorrelation in 
the data, it was conducted at a relatively coarse spatial resolution of about 4600 meters. Although resampling 
algorithms can be used to down sample the predictions to finer resolutions, they can lead to increased 
uncertainty in predicted landcover (Pontius Jr. et al., 2008). Although our model was adept at classifying areas 
of shrubs, trees, and barren land, it failed to predict the landcover type and change in certain areas, such as 
grasses and forbs, due to a lack of data in the predictor variables in those specific locations. 
 
Additionally, satellite imagery classified according to land cover type also contains errors, and thus our LCMS 
maps may have had inaccuracies that contributed to the overall uncertainty of our forecast models (overall 
accuracy = 82.5%; Stehman et al., 2021). While LCMS maps are sufficiently accurate, they are not perfect 



 
 

predictors of land cover; when evaluating points at the scale of single pixels as we did in this study, any error 
needs to be considered. We were also unable to incorporate temperature and precipitation as driver variables 
in our analysis due to complications within LCM, which may have also affected the accuracy of our forecasted 
land cover maps. Further, because our forecast maps only accounted for static variables, results need to be 
interpreted with caution as a disturbance, such as a wildfire, could change the distribution of land cover types 
in our forecast maps.  
 
Our ground validation survey could have been more statistically rigorous if we had had more observations of 
PJW that showed no decline on the consecutive vegetation productivity decline raster. However, time did not 
allow for the surveys to be expanded beyond what was accomplished. As is, our survey was focused on point 
locations with at least two years of predicted productivity decline. Our validation did not sufficiently sample 
non-decline PJW areas. A larger sample size that included both multi-year consecutive decline and non-
decline PJW areas would have enabled a more comprehensive assessment. Also, a separate validation of the 
masking that took place, specifically the classification of pinyon-juniper woodlands versus other specific types 
of land cover types, would allow for a better analysis of the null raster values, within the study area. In 
addition, stratified random sampling of declining versus non-declining PJW would add statistical rigor that 
was not possible given the limited duration of this project. 
 
4.3 Future Work 
Although there is not currently a third term planned for this project, there are several additional analyses that 
could be investigated further to add to the informative capability of this project in the future. For example, 
future research could include the effect of insect and disease outbreaks on pinyon-juniper and sagebrush 
habitats in addition to the climate variables investigated in this study, as climate change can increase the 
occurrence of fatal diseases that can cause large-scale PJW die-off (Shaw et al., 2005). Additionally, future 
research could focus explicitly on forecasting what expected invasion of non-native species would look like if 
trends in land cover change continue as forecasted. Further, the forecasting methods utilized in this project 
could also be used to investigate the effects of wildlife grazing on pinyon-juniper and sagebrush habitats as 
well as map changes in wildlife distribution based on forecasted land cover change. We were also unable to 
include dynamic driver variables such as temperature and precipitation in our forecasting model, so future 
analyses would benefit from the addition of these variables as drivers of change to forecast landcover change. 
Based on the results of our field validation, sites that were identified as potential beetle kill sites but were not 
accurate could be reevaluated to determine the actual cause of disturbance and sites that volunteers were not 
able to access could also be sampled to further improve our validation results. Further, future work could 
assess the impacts of wildland fires and vegetation treatments to forecast vegetation recovery in order to 
make targeted treatment decisions. Another avenue for future research that would enhance the findings in 
our study would be the use of CNM as a control area without fires to compare to the BLM lands that have 
burned in order to assess potential land cover changes after fires.  
 
5. Conclusions 
We developed several maps to identify forecasted land cover change in PJW and sagebrush habitats that 
factored in historical climate variability and land cover change. In this process, we identified the most 
important drivers of change in land cover to be elevation, aspect, temperature, and precipitation. Forecasted 
land cover change maps were created using the two most important variables (elevation and aspect) to train 
the model. Forecasted land cover maps excluding 2020 data suggest that both CNM and MCNCA could 
expect a transition to some extent from shrubs to trees by the year 2040 if conditions persist. However, 
forecasted land cover maps that include 2020 suggest that some areas that were previously trees will transition 
to shrublands within partner perimeters. Additionally, our ground truthing of suspected beetle infestation 
areas provided evidence that Landsat NDVI data were more accurate than not at identifying areas of 
vegetation decline indicative of tree mortality from bark beetle outbreaks.  
 



 
 

The potential transition of shrubs to trees throughout the partners’ perimeters will likely have consequences 
that reverberate throughout the ecosystem of the Grand Valley region. For example, native flora and fauna 
that rely on shrublands for survival could lose critical habitat due to PJW encroachment or be replaced by 
invasives. Another concern that arises with the encroachment of PJW into shrublands is the increase in the 
severity of wildfires with the increase in density of PJW stands (Miller et al., 2019). This increased severity of 
wildfires threatens the survival of native species and the infrastructure of rural communities. However, our 
forecast maps (see Figure C1) that include 2020 as a training year suggest a shift in land cover trends over the 
last five years towards a greater transition from trees to shrubs. McInnis Canyons NCA had multiple wildland 
fires between 1998 and 2020, and it’s possible that these large disturbances in the short term (less than 20 
years) could influence the future land cover changes.   
 
Our results will assist the NPS and BLM in managing their respective parcels within Grand Valley, CO. The 
forecasted land cover change maps generated will benefit both CNM and MCNCA/DENCA by allowing 
them to visualize changes in the extent of pinyon-juniper woodlands and sagebrush stands as well as general 
landcover changes. Specifically, our projections of areas vulnerable to extensive change from trees to shrubs 
could be used by the BLM to make decisions on prevention or encouragement. The NPS, in line with their 
more hands-off strategy, can utilize the geodatabase provided and interact with or update the GIS layers in 
combination with their own Earth observation data and field surveys to inform management.  
 
This project is an example of what an effective collaboration between partner organizations and DEVELOP 
teams can look like. We were able to utilize satellite data and areas of consecutive vegetation productivity 
decline identified by the previous term to select points of interest which citizen science volunteers and staff at 
Colorado National Monument, as well as the staff at the Grand Valley BLM office, were then able to validate 
on the ground. This collaboration should benefit partners because the results of the validation suggest that 
satellite imagery can be used to effectively identify locations of disturbances in the Grand Valley region, such 
as beetle infestations of PJW, possibly before they are detected on the ground. Being able to accurately detect, 
assess, and monitor PJW disturbances with the use of satellites and remote sensing technology could help to 
better inform management decisions by the partners in the future. 
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7. Glossary 
ArcGIS Pro – Geographic Information Systems (GIS) software used to store, view, and analyze geographic 
data 
BLM – Bureau of Land Management 
CAST – 'caret' Applications for Spatial-Temporal Models, R package 
CNM – Colorado National Monument 
DENCA – Dominguez-Escalante National Conservation Area 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
GIS – Geographic Information Systems, computer applications used to store, view, and analyze geographic 
information 
Idrisi TerrSet LCM – Idrisi TerrSet Land Change Modeler 
LCMS – Landscape Change Monitoring System 
LiDAR – Light Detection and Ranging, remote sensing method 
MCNCA – McInnis Canyons National Conservation Area 
MODIS – Moderate Resolution Imaging Spectroradiometer 
NDVI – Normalized Difference Vegetation Index 
NetCDF – Multidimensional raster datasets 
NPS – National Park Service 
PJW – Pinyon-juniper woodlands 
R – Scripting language 
Random Forest – Machine Learning algorithm for classification and regression 
Remote Sensing – Obtaining information about an object or area from a distant sensor, such as on a drone, 
aircraft, or satellite  
Shapefile – Data format for Geographic Information Systems (GIS) software, data is in the format of points, 
lines, and/or polygons  
Tidyverse – R package for data wrangling 
Tmax – Maximum temperature  
Tmin – Minimum temperature 
TO-CV – Target Oriented Cross-Validation 
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9. Appendices 

 

Appendix A 

 

 

Figure A1: Map of Consecutive Vegetation Decline created by the Term-1 Team that was used for selection of 
validation points 

 



 
 

 

 

 Figure A2: Reclassification of land cover classes in LCMS images 

 

 

 

 

  



 
 

Appendix B 

 

Confusion Matrix 

Ground Observations  
  No Beetle Kill Beetle Kill 

Predicted by Consecutive 
Vegetation Productivity 
Decline 

No Beetle Kill 
0 0  

Beetle Kill 
17 38 55 

 
False Positives: 
17 (31%) 

True 
Positives:  
38 (69%) 

55 

Figure B1: Confusion Matrix of field validation survey points. 

 

  



 
 

Appendix C 

 

 

Figure C1: Forecasted conversions of Tree, Shrub, and Grass & Forb landcover types within the boundaries of 
Colorado National Monument, Dominguez-Escalante and McInnis Canyons National Conservation Areas. 

The dates below each map indicate the temporal range of the training data. The 1985–2010 model favors tree 
expansion, while the 1985–2015 model shows a balance between conversion to trees and shrubs. 1985–2015 

also shows more transition in McInnis Canyons National Monument than in Dominguez-Escalante, and 
favors tree expansion in MCNCA. The 1985–2020 model shows the least replacement overall, but favors 

transition to shrubland, especially in Dominquez Escalante. 


