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1. Abstract 
Due to increasingly frequent and severe drought conditions in the southwestern US, land managers and 
livestock producers need to monitor stock ponds with increasing regularity. The ability to assess stock pond 
water levels with Earth observing satellite systems would enhance monitoring efforts of partners at the US 
Forest Service, Arizona Department of Game and Fish, and the Diablo Trust. This study employed Landsat 8 
Operational Land Imager (OLI), Sentinel-1 C-band Synthetic Aperture Radar (C-SAR), and Sentinel-2 
Multispectral Instrument (MSI) to monitor surface water extent for hundreds of critical stock ponds in 
Arizona. Using methods adapted from previously developed image processing workflows, this project 
conducted a time-series analysis to capture seasonal and interannual variations in surface water area between 
2013 to 2021. In addition, end users can monitor the surface water extent of stock ponds through the 
developed Google Earth Engine software tool called Surface Water Identification and Forecasting Tool 
(SWIFT). SWIFT incorporates the Automated Water Extraction Index, Modified Normalized Difference 
Water Index, and Tasseled Cap-Wetness Index for optical imagery and the incidence angle, VV and VH 
polarization bands for Sentinel-1 imagery to detect small water bodies in the study area with an overall 
accuracy range of 88-93%. These tools will empower our partners to monitor the extents of water in their 
stock ponds remotely, enabling them to develop data-informed and sustainable management solutions for 
decades to come.   
 
Key Terms 
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2. Introduction 
2.1 Background Information 
In the Southwestern United States, increasingly frequent drought conditions have become problematic for 
land and livestock managers. These drought conditions reduce precipitation and increase evaporation rates, 
which limit the ability of water to accumulate and remain as surface water. Stock ponds across the 
Southwestern US provide water to livestock and wildlife. Sufficient water supply is essential for maintaining 
quality animal health and production, especially species raised on pastures and rangelands like cattle, sheep, 
and goats. Arid ecosystems are particularly susceptible to climate change and climate variability (Archer and 
Predick, 2008). For example, environmental temperature, humidity, livestock diet and stage of growth all 
influence water intake (Meehan et al., 2021). Monitoring stock ponds is challenging due to their often-remote 
locations. Ranchers and land managers either relied on past occurrences or drove to assess ponds' water 
levels. Therefore, land managers and ranchers need a monitoring tool that is efficient, cost-effective, and 
reliable to decide appropriate livestock locations or make wildlife management decisions. 

This study assessed variations in the extent of surface water bodies from March 2013 to August 2021 in the 
Coconino and Yavapai Counties in Northern Arizona. The stock ponds identified in this study are located on 
US Forest Service land (Figure 1). The landscape is characterized as a desert shrub, ponderosa pine, and sub-
alpine fir forest. From 1971 to 2021, summer (June-August) temperatures averaged 71.7 0F and 76.8 0F in 
Coconino and Yavapai Counties, respectively (National Centers for Environmental Information [NCEI], 
2021a; NCEI, 2021b); precipitation averaged 3.83 inches and 4.47 inches in Coconino and Yavapai Counties, 
respectively (NCEI, 2021c; and NCEI, 2021d). 
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Figure 1. Maps of the study area, including a regional map of the US. Map (a) indicates stock pond point 
locations (blue and purple dots). Map (b) shows land ownership in Coconino (North) and Yavapai (South) 

Counties. 
 
Previous research (Feyisa et. al., 2014; Fisher et al., 2016; Herndon et. al, 2020) has demonstrated the 
feasibility of Earth observations (EO) to detect surface water bodies. Some of these research studies have 
been conducted on small water body detection using EO, and notable among these is the work of Soti et al. 
(2009), where Landsat 8 Operational Land Imager (OLI) was utilized for the detection of ponds less than 
0.27 acres in size by employing water detection indices. Based on the unique spectral pattern of water, 
identifying surface water from remote sensing data involves the use of indices with high accuracy in arid 
environments like the Modified Normalized Difference Water Index (MNDWI) and the Tasseled Cap-
wetness index (TCW). TCW performs best in low-density vegetation because of its ability to identify moisture 
in vegetation (Baig et al., 2014). MNDWI enhances water body detection by increasing the rejection of land 
and flora features (Xu, 2006). The indices can establish a threshold value to delineate water body extent for 
accurate water body monitoring. 
 
2.2 Project Partners & Objectives 
This project was conducted in collaboration with US Forest Service (USFS), Rocky Mountain Research 
Station; USFS, Kaibab National Forest; Arizona Department of Game and Fish; and Diablo Trust. Partners 
previously relied exclusively on ground measurements to monitor stock pond fill levels, including some 
measurements using ground-based LiDAR instruments. For this project, partners were interested in 
employing NASA EO to more efficiently assess and forecast fill levels in regional stock ponds and tanks. 
Thus, we collaborated with the Rocky Mountain Research Center to create publicly available end products for 
future use by the Kaibab National Forest, Arizona Department of Game and Fish, and Diablo Trust.  
 

(b) (a) 
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Diablo Trust is a private organization which collaborates with ranchers and land managers who are focused 
on ensuring long-term economic, social and ecological sustainability of ranching in the US Southwest. Diablo 
Trust works collaboratively with USFS, Flying M Ranch, Bar T Bar Ranch, and Northern Arizona University 
to facilitate research about the protection and preservation of natural resources to further promote working 
lands in the West. Arizona Department of Game and Fish and USFS Range Management Program works 
with landowners and ranchers to manage agricultural land and water resources. Water resources management 
is a state prerogative, but constitutional powers are granted to USFS on federal lands (Abrams, 2010). Arizona 
Department of Game and Fish and cattle producers abide by state water law. Ranchers rely on precipitation 
and surface water runoff to replenish their ponds. To maintain cattle and water resources, land managers and 
ranchers rely heavily on site visits and measurements to evaluate the level of their ponds. 
 
To address the goals for the project as communicated by the partners, our primary project objectives were to 
(1) determine the appropriate indices and EO products to employ for the classification of surface water 
extents, (2) create a time series map of automatically delineated regional surface water areal extents from 
March 2013 to August 2021, and (3) create an accessible tool for future surface water extent change detection 
that enables bi-weekly stock pond water availability. The detailed methods for completing each of these 
objectives are described below.  

 
3. Methodology 
3.1 Data Acquisition  
3.1.1 Satellite Imagery 
To identify stock ponds within the study area, we used optical imagery derived from Landsat 8 OLI and 
Sentinel-2 Multispectral Instrument (MSI), and radar imagery from Sentinel-1 C-Band Synthetic Aperture 
Radar (C-SAR), shown in Appendix A. We accessed all imagery through Google Earth Engine’s (GEE) 
cloud-based resources to facilitate sharing end products with partners. Landsat 8, launched in 2013, orbits the 
Earth in a sun-synchronous orbit at an altitude of 705 km and with a repeat cycle of 16 days. The spectral 
bands of the Landsat 8 OLI surface reflectance product employed here are available at 30 m resolution. The 
European Space Agency (ESA) Sentinel-2 mission is comprised of two polar-orbiting satellites with a sun-
synchronous orbit and a repeat cycle of 10 days (Copernicus, 2021). The spectral bands of the Sentinel-2 MSI 
are available at 10-20 m resolution. The ESA Sentinel-1 satellite mission is comprised of two satellites, A and 
B, which launched in 2014 and 2016, respectively. Each satellite completes a near-polar, sun-synchronous 
orbit with a combined repeat cycle of 6 days (Copernicus). The Sentinel-1 Ground Range Detected (GRD) 
products available through GEE have been pre-processed using the ESA Sentinel-1 Toolbox and are 
available at multiple spatial resolutions (10 m, 25 m, or 40 m) and four polarization bands.  
 
3.1.2 Stock Pond Locations 
Project partners provided more than 1000 known stock pond point locations within USFS and Bar T Bar 
Ranch jurisdictions (Figure 1). In addition, we used Maxar Imagery captured in the month of January 2018 
available through Esri to digitize 1424 points, which were visually classified as “water” or “non-water.” These 
digitized points were used both for training the classification model as well as the accuracy assessment, 
discussed in Sections 3.2 and 3.3 below. 
 
3.2 Data Processing 
This section describes the pre-processing, classification, post-processing, and accuracy assessment workflow 
for optical and radar imagery used to classify stock pond areal extent from March 2013 to August 2021. 
Figure 2 shows the team’s step-by-step methodology in a flowchart.  
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Figure 2. Flowchart showing the general image processing workflow applied in this study. A) Data Acquisition 

& Pre-processing for the Landsat 8 OLI, Sentinel-2 MSI, and Sentinel-1 GRD data products, resulting in 
Modified Normalized Difference Water Index (MNDWI), Automated Water Extraction Index, shadow-

corrected (AWEIsh), Tasseled-Cap Wetness (TWC), and Normalized Difference Vegetation  
Index (NDVI) spectral band indices for the optical image collection, and analysis-ready data products for the 
radar image collection. B) Classification of water pixels using the training data as inputs. C) Post-processing 
steps including Smoothing of the Sentinel-1 classified collection using a Boxcar kernel smoothing algorithm 

and Image Mosaicking. D) Accuracy Assessment and Report of the resulting classified water bodies using the 
testing points. 

 
 
3.2.1 Pre-Processing: Optical Imagery 
To classify stock ponds using the complete collection of optical imagery, including Landsat 8 and Sentinel-2 
surface reflectance products available in GEE, we first removed all images with a cloud cover greater than 
10% as reported in the image metadata. To further remove the influence of cloud cover in the remaining 
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images in the collection, we then applied a cloud-masking algorithm using object segmentation techniques on 
the near-infrared, cirrus, and thermal bands in both Landsat 8 and Sentinel-2 imagery to detect clouds (Zhu 
and Woodstock, 2012; Zhu et al., 2015; Mishra et al., 2020). Next, we calculated several image band indices as 
shown in Table 1, which have been previously employed for efficient surface water detection in optical 
imagery (Feyisa et al., 2014; Nguyen et al., 2019; Fisher et al., 2016; Herndon et al., 2020). These indices 
include Automated Water Extraction Index, shadow-corrected (AWEIsh), Modified Normalized Difference 
Water Index (MNDWI), Tasseled-Cap Wetness (TCW), and Normalized Difference Vegetation Index 
(NDVI).  
 
 
Table 1 
Summary of band indices used for surface water detection in optical imagery, where 𝜌 denotes the surface reflectance of each 
respective band.  

Name Equation 
Bands Used 

B G R NIR SWIR1 SWIR2 

MNDWI (𝜌Green - 𝜌SWIR) / (𝜌Green+ 𝜌SWIR1)   X     X   

AWEIsh 
𝜌Blue + 2.5𝜌Green - 1.5(𝜌NIR+ 𝜌SWIR1) - 

0.25𝜌SWIR2 
  X   X X X 

TCW 
0.1511(𝜌Blue) + 0.1973(𝜌Green) + 0.3283(𝜌Red) + 
0.3407(𝜌NIR) - 0.7117(𝜌SWIR1) - 0.4559(𝜌SWIR2)  

X X X X X X 

NDVI (𝜌NIR - 𝜌Red) / (𝜌NIR + 𝜌Red)     X X     

 
3.2.2 Pre-Processing: Radar Imagery 
To classify water bodies using Sentinel-1 C-SAR GRD collection, we first conducted the pre-processing 
workflow described by Mullissa et al. (2021), which includes publicly available scripts for image processing in 
GEE. The major steps of the workflow include border noise correction, speckle filtering, and radiometric 
terrain normalization of each image in the Sentinel-1 image collection. The resulting analysis-ready data are in 
gamma naught, as defined by Hoekman and Reiche (2015).  
 
Although radar imagery is not affected by cloud cover, high wind speeds can impact surface roughness, 
particularly for bodies of water, which can lead to higher radar backscatter reaching the sensor (Alsdorf et al., 
2007) and increased omission errors in classifying water bodies. Therefore, we applied a wind masking 
algorithm using wind observations near the time of image capture from the National Center for 
Environmental Prediction Climate Forecast System Version 2 6-hourly product (Saha et al., 2011) and 
previously published code from Gulácsi and Kovács (2020), which masks all pixels with a wind speed greater 
than 12 km/h near the time of image capture.  
 
3.2.3 Classification 
In order to classify pre-processed images as “water” or “non-water” areas, we employed a Random Forest 
Classification model for both the optical and radar image collections. To train the models before application 
to the image collection, we first visually classified 1424 points as “water” and “non-water” in Maxar imagery 
captured 27-30 January 2018, which we then overlaid onto all Landsat 8 and Sentinel-2 captured within one 
week of the Maxar imagery. We used the resulting spectral band indices and water property (i.e., “water” or 
“non-water”) at 80% of the 1424 observed to train the Random Forest Classification Model. We set aside the 
remaining 20% of observed points for accuracy assessment of the classification model, described in Section 
3.3.3 below. For optical imagery, the MNDWI, AWEIsh, TCW, and NDVI bands were used as predictors. 
For radar imagery, the co-polarization (VV) and cross-polarization (VH) bands and the incidence angle were 
used as predictors. Following development of the classification models, we classified the complete image 
collection, resulting in a binary image collection of “water” (0) and “non-water” (1) points. 
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3.2.4 Post-Processing 
The classification of Sentinel-1 C-SAR imagery relies on the assumption that smooth water surfaces produce 
low backscatter returns to the radar antenna, contrasting with the high backscatter of soil and vegetation 
surfaces (Ovakoglou et al., 2021). Upon visual inspection of the classified Sentinel-1 image collection, we 
found substantial noise in a variety of landscape settings likely due to surface roughness variations with some 
identified non-water pixels being classified as water. To mitigate these misclassifications, we applied a square-
shaped Boolean kernel convolution to smooth the imagery using a window of five pixels, resulting in a single-
band image with pixel values ranging from 0 to 1. Following visual analyses to identify the optimal threshold 
value for water detection, pixels with a classification value greater than or equal to 0.97 following the 
smoothing convolution were classified as water. To simplify data processing, as well as to increase the 
geographic and temporal coverage of surface water extent observations, we then created image mosaics for all 
classified images captured within the same week. Where images overlapped, we computed the median 
classification value (between 0 and 1) at each pixel, where a value of 1 represents water pixels.  
 
Next, to minimize the anomalies associated with topography for Sentinel-1 C-SAR and snow cover or high-
elevation features in optical imagery, we filtered out all pixels in the image mosaic collection with a Height 
Above Nearest Drainage (HAND) index above 10 m. HAND is a terrain index that normalizes local 
topography according to the relative heights found along with the drainage network in flood, soil moisture, 
and water availability mapping applications (Nobre et al., 2011; Hamdani and Baali, 2019; Garousi‐Nejad et 
al., 2019; Bioresita et al., 2018). The HAND index has been used to define hydrologically consistent 
catchments (Nobre et al., 2011) and to filter out backscatter anomalies due to topography to reduce 
commission errors (Bioresita et al., 2018). To employ this technique, we used the HAND band from MERIT 
Hydro (Yamazaki et al., 2019), which provides high-resolution raster hydrography maps available through 
GEE. Because all water major bodies and identified stock ponds in the study area present a HAND index of 
less than 10 m, pixels with a HAND index above 10 m were set to no-data values.   
 
3.3 Data Analysis 
Finally, to create the time series of historical surface water extents, we computed the total surface area of 
water for each weekly classified image mosaic in both the entire study area and for each grazing allotment in 
Arizona. As a supplement to the time series maps of surface water extents, we designed an accessible tool 
using the GEE graphical user interface (GUI) capability called the Surface Water Identification and 
Forecasting Tool (SWIFT). This tool enables users to select a grazing allotment in the Southwest US and to 
view the total surface water extent for the most recent satellite imagery, as well as a classified image, true color 
image, and the historical time series of surface water extents within the grazing allotment. Data can be 
exported for further analyses external to SWIFT. We provided partners with a tutorial with instructions and 
primary steps for accessing data through the tool. SWIFT will allow partners to: (1) analyze both spatial and 
temporal trends in surface water extents throughout grazing allotments in the Southwest US, (2) compute the 
near-real time (within 1-2 weeks of the date of access) water levels in grazing allotments, and (3) compile 
water extent forecasting resources towards developing adaptive land, livestock, and wildlife management 
strategies in years to come. To assess the classification accuracy for both the optical and radar Random Forest 
Classification models, we computed the overall accuracy, confusion matrix, and kappa statistics for the ~20% 
of the 1424 observed points (Figure 3) set aside for testing.   
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Figure 3. (a) Map of all digitized points used for training the classification models and the accuracy assessment. 

Blue points represent “water” and orange points represent “non-water” points. The yellow start represents 
the zoomed in region shown in panel (b). 

  
4. Results & Discussion  
4.1 Analysis of Results  
4.1.1 Surface Water Identification and Forecasting Tool (SWIFT) 
The method used to create the historical time series was also used to develop an accessible tool using the 
GEE Graphical User Interface (GUI) capabilities, referred to as Surface Water Identification and Forecasting 
Tool (SWIFT). SWIFT allows ranchers, and land managers to access near real-time observations of surface 
water extents, thereby greatly reducing the substantial time and cost required to monitor stock ponds through 
in situ observations. By selecting an area of interest using drop-down tabs for the following options—state, 
national forest, ranger district, and grazing allotment—users can assess current water extents relative to 
historical extents, as well as export multiple datasets for comparison between allotments. This tool is meant to 
supplement field monitoring and will reduce the time and cost required by land managers and ranchers to 
physically drive to check remote stock ponds. By efficiently accessing both historical data and current 
conditions for hundreds of stock ponds and other water features, SWIFT will enable partners to develop 
adaptive management strategies in years to come.  
 
The temporal cadence of observations within the tool is dependent on the temporal resolution of remote 
sensing datasets in addition to the lag time between image capture and image availability through GEE (~1-2 
days). Sentinel-2’s temporal resolution (5 days) is significantly higher than that of Sentinel-1(12 days) or 
Landsat 8 (16 days). The most recent image capture date is displayed to the user upon image classification.  
 
4.1.2 Time Series Maps 
Figure 4 displays the average monthly total surface area of water in the study area since 2013 using the image 
processing workflow presented here, as well as the monthly moving mean precipitation for the study area 
from gridMET. GridMET is a dataset of daily high-spatial resolution (~4-km, 1/24th degree) surface 
meteorological data covering the contiguous US from 1979 to the present, accessible through GEE and 
Climate Engine (Abatzoglou, 2013). Our findings show that the method captures both seasonal and 
interannual variations in regional water surface area. We observed the maximum surface water extent in the 
study area of ~220 km2 in the winter of 2021. Other notable peaks in water extent occurred during the spring 
of 2020 and summer of 2018.  
 



8 
 

 
Figure 4. (a) Map of the study area with the Arizona state borders marked. (b) Time series of average 

monthly total surface areas of water in the study area since March 2013 with the 2-month moving average 
(purple). The monthly moving average precipitation for the study area from gridMET (Abatzoglou, 2013) is 

shown along the right y-axis (blue).  
 

In addition to the overall trends in surface water extent, we analyzed the cross-correlation with the regional 
precipitation during the study period (Figure B1). We found a maximum cross-correlation value for a lag time 
of –1 month. We interpret this to show that increases in surface water throughout the study area occur most 
often after one month of increased precipitation. We also note particularly low surface water extents (less 
than 50 km2) and cross-correlation values before 2018 despite persistent precipitation. These low values may 
be due to limited satellite observations. Sentinel products are not available through GEE for all dates, which 
may decrease the spatial coverage of observations and increase the likelihood of masked pixels due to cloud 
cover in Landsat 8 imagery. 
 
To further analyze regional trends throughout Arizona in recent years, we computed the average monthly 
total surface area of water in each National Forest in Arizona (Figure B1). Here, we see that the Coronado, 
Coconino, and Apache-Sitgreaves National Forests contribute the majority of total water area throughout the 
state. In contrast, the Tonto, Prescott, and Kaibab National Forests show consistently low water extents 
throughout the study period with respect to other forests, with some notable increases in water extent in the 
Tonto National Forest in 2021. It should be noted that not all Arizona National Forests lie within the 
designated study area; therefore, the total surface water extents in the study area and National Forests are not 
directly relatable.  
 
4.1.3 Accuracy Assessment, Error, and Uncertainties 
Wet, muddy, or moist surfaces can increase the likelihood of commission errors due to increased backscatter 
in Sentinel-1 imagery, or a spectral signature similar to that of surface water bodies in optical imagery. 
Sentinel-1 classified imagery seems to overestimate water surface areas during wetter seasons in the region 
(Figure B2), which may bias estimates of surface water extent in the winter months when optical imagery is 
not usable. To combat these potential errors or decreased spatial coverage due to cloud cover, Sentinel-1 
imagery has shown to successfully capture water features which were otherwise filtered out by clouds in 
optical imagery captured the same week (Figure 5, Figure B2).  
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Figure 5 (a) Pre-processed true color mosaic of optical (Landsat 8 and Sentinel-2) imagery. (b) Classified 

optical imagery. (c) Pre-processed, false color Sentinel-1 imagery displayed using the VV and VH polarization 
bands. (d) Classified Sentinel-1 imagery. For classified imagery (b and d), black represents non-water points 
and white represents classified surface water. All images were captured in January 2018. The regional map 
(bottom) shows the zoomed in area located in Arizona shown in panels (a) - (d) represented by the yellow 

star. 
 
We also observed evidence of decreased classification accuracy due to turbid water surfaces and local 
variations in surface roughness. This was particularly an issue observed in classified Sentinel-1 image mosaics, 
as this classification model relies on the total returns reaching the antenna, as opposed to the optical signature 
at varying spectral wavelengths. To minimize these impacts, we implemented the boxcar smoothing algorithm 
and wind masking for Sentinel-1 imagery as well as the HAND filter applied to image mosaics to decrease 
noise associated with turbid water surfaces and anomalies on ridge lines and other topographic features, for 
example. Although several steps were taken to mitigate the effects of vegetation cover, some water bodies 
may be located beneath vegetation, particularly in the more densely vegetated northern region of the study 
area. Remote observations of these water bodies may therefore not be detected here, potentially leading to 
underestimated surface water extents. 
 
Additionally, the exact quantities of the surface water extent time series maps may be subject to errors 
associated with decreased geographic coverage due to the various filters and masking algorithms. Particularly 
because only Landsat 8 is available through GEE before 2017, the 2013-2017 water extents may be limited by 
cloud masking. We suggest quantifying the total masked area in each image mosaic to increase the confidence 
and contextual information for the time series maps. The accuracy assessment of our work is also limited by a 
lack of in situ observations in the region to validate our classifications (Table 2). We suggest the 
implementation of on-site observation systems at several accessible stock pond sites throughout the region to 
validate and refine indices across a variety of land cover conditions in future work.   
 
Table 2 
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Summary of method accuracy assessment. Overall accuracy and Kappa Coefficient and confusion matrices for classified optical 
imagery (Landsat 8 & Sentinel-2) and classified SAR imagery (Sentinel-1).  
 

 Landsat 8 & Sentinel-2  Sentinel-1 

Overall Accuracy  93%   88%  

Kappa Coefficient 88%  76%  

 Confusion Matrices  

                    

                   

    Water  
Non-
water       Water  

Non-
water    

  Water  34  2      Water  27  4    

  
Non-
water  

2  27      
Non-
water  

2  18    

                   
 
4.2 Future Work 
Successful results of this research present the opportunity to expand EO-based small water body monitoring 
into other western states facing similar drought conditions like Utah, Idaho, and California. Future projects 
should include stock ponds on additional ranches, national forests, Bureau of Land Management districts, and 
state lands. Furthermore, in 2022, two new NASA missions will be launching. The NASA-ISRO SAR 
(NISAR) is a joint mission between NASA and the Indian Space Research Organization (ISRO) to produce a 
SAR to help understand the Earth's changing ecosystems. NISAR, launching in early 2023, will provide a 
temporal resolution of twelve days. The Surface Water and Ocean Topography (SWOT) mission (November 
2022) will provide a means to monitor and track Earth's water resources. These two missions warrant further 
research of possible applications in small water body detection and extent. 
 
SWIFT may have additional applications other than monitoring water surface extent within grazing 
allotments. For example, wildfire operations rely heavily upon aerial resources to support ground crews. 
Helicopters supply water to the fire line by hauling water from the closest water body. Fire managers 
currently rely on known water body locations or by scouting missions. SWIFT could aid fire management 
through detecting water bodies capable of supporting air operations.  

5. Conclusions 
The results from this study involving the analysis of spectral band indices (Automated Water Extraction 
Index, Modified Normalized Difference Water Index, and Tasseled Cap-wetness index) and the incidence 
angle, VV, and VH polarization bands for synthetic aperture radar imagery for detecting surface water bodies 
showed that the data products from Landsat 8, Sentinel-2, and the Sentinel-1 are sufficient to determine the 
extents of stock ponds in the study area with overall accuracies of 88-93%. 
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The indices employed here have been selected based on their ability to efficiently and accurately identify 
surface water features in previous studies. This study provides a detailed time-series analysis of stock pond 
water extents. Similarly, the development of an accessible tool for future surface water extent change 
detection will not only complement in-situ observation of stock pond measurements currently in use, but it 
will also empower our partners to monitor in near real-time (on a weekly basis as acquired satellite data 
becomes available) their stock pond water availability. This represents a novel approach in monitoring surface 
water extents of remote stock ponds in this region, and this will bring about sustainable and efficient land and 
livestock management practices. 

In closing, complementary to the adopted method for this study, future work might incorporate data from 
the soon-to-be-launched NASA missions, including NISAR and SWOT, which will enable expansion of the 
stock pond time series analysis maps and the potential for more frequent observations implemented into the 
monitoring tool for use in the study area and other Southwestern region frontiers. 
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7. Glossary 
Automated Water Extraction Index, shadow-corrected (AWEIsh) – Index estimating surface water 
content using the blue, green, near infrared, and shortwave infrared surface reflectance. 
Backscatter – Energy reflected back from the terrain toward the radar system 
Earth observations (EO) – Satellites and sensors that collect information about the Earth’s physical, 
chemical, and biological systems over space and time 
Google Earth Engine (GEE) – Cloud computing platform combining satellite imagery and geospatial 
datasets of Earth’s surface 
Graphical User Interface (GUI) – Visual components of a computer software utilized by users 
Indian Space Research Organization (ISRO) – National space agency of India 
Landsat 8 Operational Land Imager (OLI) – Imaging instrument aboard the Landsat 8 satellite. OLI can 
measure visible, near-infrared, and shortwave infrared wavelengths. 
Light Detection and Ranging (LiDAR) – Remote sensing method providing accurate elevation data by 
emitting laser pulses and measuring their return. 
Modified Normalized Difference Water Index (MNDWI) – Index estimating surface water content of 
vegetation using middle infrared band from satellite missions 
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NASA-ISRO SAR (NISAR) – Joint mission between NASA and the Indian Space Research Organization 
(ISRO) to produce fine-resolution radar images and measure Earth’s changing ecosystems, dynamic surfaces, 
and ice masses providing information about biomass, natural hazards, sea level rise, and groundwater. 
NASA RECOVER Western US Geodatabase – Funded by NASA, maintained by the Idaho State 
University GIS Training and Research Center 
Near-infrared (NIR) – A subset of the infrared portion of the electromagnetic spectrum ranging from 750-
2500 nm, often used for investigating surface plant and soil cover in remote sensing applications. 
Normalized Difference Vegetation Index (NDVI) – Index used to assess the presence of live green 
vegetation using near-infrared and red surface reflectance  
Normalized Difference Water Index (NDWI) – Index estimating surface water content of vegetation 
using near-infrared and shortwave infrared surface reflectance 
Remote Sensing – Detection, measurement, and acquisition of Earth’s surface characteristics using sensors 
on satellites, and aircraft 
Sentinel-1 C-Band Synthetic Aperture Radar (C-SAR) – European Space Agency constellation consisting 
of two satellites, Sentinel-1A and Sentinel-1B, each carrying a C-SAR instrument 
Sentinel-2 MultiSpectral Instrument (MSI) – Mission using wide-swath, high-resolution, multi-spectral 
imaging to monitor vegetation, soil, and inland and coastal water cover 
Shortwave Infrared (SWIR) – A subset of the infrared portion of the electromagnetic spectrum ranging 
from 1400-3000 nm, able to discriminate between clouds, snow, and ice. 
Surface Water and Ocean Topography (SWOT) – Mission to produce high-resolution 2D observations of 
sea-surface height using SAR radar techniques that combine different wavelengths. 
Surface Water Identification and Forecasting Tool (SWIFT) – Tool developed through this project that 
detects water extent change on Earth’s surface 
Synthetic Aperture Radar (SAR) – Instrument operating under all-weather and all day and night conditions, 
using the Doppler shift to monitor beams returning to the sensor  
Tasseled Cap Wetness (TCW) – Index contrasting visible and near-infrared bands with shortwave infrared 
bands 
US Forest Service (USFS) 
VH – Cross-polarization band used in Sentinel-1 C-SAR imagery 
VV – Co-polarization band used in Sentinel-1 C-SAR imagery  
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9. Appendices 
Appendix A 

Table A1 
Summary of Datasets Used 

Satellite-Derived Data 
Product  

Available Temporal 
Coverage   

Spatial 
Resolution 

Parameters 

Landsat 8 OLI Surface 
Reflectance Tier 2 

February 2013 – July 
2021 

30 meters Modified Normalized Difference 
Water Index (MNDWI)  
Automated Water Extraction 
Index, shadow-corrected 
(AWEIsh) 
Tasseled-Cap Wetness (TCW) 
Normalized Difference 
Vegetation Index (NDVI)  

Sentinel -1 C-SAR 
Ground Range Detected  

April 2014 – July 
2021 

10 meters Co-polarization (VV) and cross 
polarization (VH) bands 
Instrument angle 

Sentinel-2 MSI, Level 2-A  June 2015 – July 
2021 

10 meters 
(B,G,R, NIR) 
 
20 meters 
(SWIR1, SWIR2) 

Modified Normalized Difference 
Water Index (MNDWI)  
Automated Water Extraction 
Index, shadow-corrected 
(AWEIsh) 
Tasseled-Cap Wetness (TCW) 
Normalized Difference 
Vegetation Index (NDVI) 

Maxar High-Resolution 
Imagery* 

January 2015 – 
December 2020 

0.5 meter Digitized “water” and “non-
water” points used for training 
the classification model and 
accuracy assessment 

USFS and Bar T Bar 
Ranch stock ponds points 

N/A  Study area, points of interest 

The “*” indicates commercial imagery not shared with partners or end users 
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Appendix B 

 
Figure B1. Plot of cross-correlation between the precipitation and surface water extent in the study area, with 

the 2-month lag moving mean of the cross-correlation represented by the blue line. 
 

 
Figure B2 (a) Map of National Forests located in Arizona with state borders marked. (b) Time series of 

average monthly total surface areas of water in each National Forest since March 2013. 
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