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1. Abstract 
Within the Monongahela National Forest (MNF), situated in the Allegheny Highlands of West Virginia, 
extensive logging and mining practices have significantly altered the structure and composition of flora and 
fauna over the past two centuries. Of particular concern to MNF land managers are red spruce (Picea rubens) 
stands, which provide shelter and food to several endangered and threatened species. To aid red spruce 
restoration, this study mapped current and historical stands and identified non-native stands with suitable 
habitats for red spruce in the Sharp Knob Red Spruce Restoration Area. Data from Landsat 5 Thematic 
Mapper (TM), Landsat 8 Operational Land Imager (OLI), and Shuttle Radar Topography Mission (SRTM) 
were input into classification tree and fuzzy logic algorithms. Furthermore, 2018 classification maps were 
utilized in the TerrSet Land Change Modeler to forecast red spruce extent up to 2040. As a product of these 
analyses, we produced three sets of maps: four time series maps of red spruce stands from 1989 to 2018, a 
map that identifies suitable stands for future restoration efforts, and a red spruce land cover change map up to 
2040. Our results indicate that 1,040 hectares are suitable for future restoration in Sharp’s Knob, with an 8% 
gain in red spruce stands from 1989 to 2018. However, forecasting results indicate that management 
intervention will be necessary for this trend to continue. 
 
Keywords 
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2. Introduction 
2.1 Background Information  
Forest succession and structure are important ecological factors with wide-ranging implications (Chu & Guo, 
2014). Changes in a forest’s dominant canopy cover can significantly alter the biophysical characteristics of its 
ecosystem, including soil morphology, groundwater hydrology, and fauna biodiversity (Nauman et al., 2015; 
US Forest Service, 2014). Thus, an important goal of sustainable forest management is successful forest 
regeneration, particularly in ecosystems dominated by non-native species (Vickers et al., 2019). Within these 
ecosystems, land managers often focus on implementing strategies that reduce non-native species while 
restoring native species to their historical habitats. However, achieving this result requires meticulous data 
collection and a thorough understanding of habitat dynamics of the study site. In particular, managers need to 
know where native species currently thrive and where suitable habitats exist within the management parcel 
(Falkowski, Evans, Martinuzzi, Gessler, & Hudak, 2009; Nowacki & Wendt, 2010). A thorough understanding 
of these parameters can facilitate forecasting future species composition and spread under a variety of 
management, urbanization, and climatic scenarios (Busing, Solomon, McKane, & Burdick, 2007).   
 
This study focuses on the Sharp’s Knob Red Spruce Restoration Area – referred to as Sharp’s Knob – located 
in the Monongahela National Forest (MNF). Historically, red spruce (Picea rubens) was the dominant canopy 
cover species. However, extensive logging and mining practices during the early 20th century, in combination 
with aggressive fire seasons, have significantly altered the landscape (Gundy, Strager, & Rentch, 2012; Lynch & 
Hessl, 2010; Nowacki & Wendt, 2010). This area of the Monongahela National Forest was heavily mined for 
over 200 years, but in the 1970s and 1980s, the process of surface mining to extract coal saw a resurgence in 
southwestern West Virginia (Sams & Beer, 2000). Following this environmental degradation, early restoration 
efforts focused on planting non-native hardwoods, resulting in a widespread conifer-to-hardwood transition.  
 
This transition from native to non-native tree species has proven problematic given that red spruce not only 
provides shelter and food for two of MNF’s endangered species – the northern flying squirrel (Glaucomys 
subrinus fuscus) and the Cheat Mountain salamander (Plethodon netting) – but also facilitates critical soil organic 
carbon stocks and cultivates absorbent soils near hydrologic headwaters (Nowacki & Wendt, 2010; Nauman & 
Connolly, 2014; Pauley, 2010; Wooten, Sutton, & Pauley, 2010). The 20th-century conifer-to-hardwood 
transition resulted in massive losses of soil carbon to the atmosphere (Nauman & Connolly, 2014). However, 
current literature suggests that restoring historic red spruce stands in West Virginia could reintroduce 
approximately 6.6 teragrams of carbon to the soil within 80 years (Nauman & Connolly, 2014). Additionally, 
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the hydraulic holding capacity of red spruce associated soils is a thousand-fold when compared to soils 
associated with hardwoods, producing important implications for the region’s water quality and susceptibility 
to flooding (Hart, 1959; Mockrin, Lilja, Weidner, Stein, & Carr, 2014). 
 
To aid forest regeneration of red spruce, this study located native species cover, identified suitable native 
species habitats, and forecasted future extent under specific management scenarios. Previous studies have used 
high-resolution imagery to detect and classify specific tree species in a mixed forest in addition to detecting 
tree mortality from drought (Makoto, Tani, & Kamata, 2013). Medium and coarse resolution satellite imagery 
has been utilized in the same manner, particularly Landsat imagery (Hart et al., 2015) and Sentinel imagery 
(Soleimannejad, Ullah, Abedi, Dees, & Koch, 2019). Light Detection and Radar (LiDAR) has also been used 
successfully in unions with multispectral data (Dalponte, Bruzzone, & Gianelle, 2008). For spectral 
identification and differentiation between species, particularly in distinguishing between coniferous and 
deciduous stands, imagery stacks have proven effective. Imagery stacks for these analyses often include leaf-on 
and leaf-off seasons, in addition to vegetation indices such as the Normalized Difference Vegetation Index 
(NDVI), Infrared Percentage Index (IPVI), Red-Green Ratio Index (RGI), and the Optimized Soil-Adjusted 
Vegetation Index (OSAVI) (Hart & Veblen, 2015; Xie, Chen, Lu, Li, & Chen, 2019).  
      
2.2 Project Partners  
We partnered with the US Forest Service (USFS) Monongahela National Forest and the Northern Institute of 
Applied Climate Science (NIACS) to explore the feasibility of using NASA Earth observations to guide 
restoration efforts at Sharp’s Knob. Red spruce stands, once restored, can provide the necessary habitats for 
endangered species, influence soil organic carbon stocks, and improve groundwater hydrology. Our partners 
will use the maps from this project to guide restoration efforts and management decisions within Sharp’s 
Knob, such as identifying areas to cut nonnative hardwoods and plant red spruce seedlings. Forecasting maps 
will be similarly used to guide restoration, particularly in justifying the allocation of resources for red spruce 
restoration as climate variation impacts habitats. Additionally, our partners will replicate our methodology for 
future red spruce restoration – both to monitor ongoing initiatives and to select future sites. 
           
2.3 Objectives 
The objectives for this project were to 1) identify the historical extent of red spruce stands within the study site 
from 1989 to 2018 using a supervised classification algorithm, 2) conduct a habitat suitability analysis on 
Sharp’s Knob to identify areas suitable for red spruce that are currently dominated by non-native hardwoods, 
and 3) use the output from objectives 1 and 2 to forecast the extent of red spruce under various management 
and climate variation scenarios up to 2040. Following the completion of our three main objectives, a well-
documented tutorial outlining the workflow of the project was produced. Although the current project focuses 
on Sharp’s Knob, our partners have expressed a strong interest in replicating our methodology for future 
restoration projects. 
 
2.4 Study Area 
The MNF lies in the Alleghany Highlands of eastern West Virginia, with the spine of the southern 
Appalachians running through its center. MNF encompasses a total area of 6,889 km2, making it the largest 
National Forest in West Virginia. Within its boundaries is Spruce Knob, which is the state’s tallest peak at an 
elevation of 1,481 m. The eastern side of the forest is significantly lower in elevation, lying at 304 m. The 
majority of the MNF lies within a single Landsat scene, Worldwide Reference System path 17 and row 33. 
However, the southern corner of the study site lies within path 17, row 34. Per partner request, this project 
focuses on Sharp’s Knob (Figure 1), which entails 52 km2 and is at an elevation of approximately 1,381 m.  
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Figure 1. Study area map of Sharp’s Knob Red Spruce Restoration Area within the Monongahela National 

Forest in West Virginia.  
      
3. Methodology 
3.1 Data Acquisition  

Imagery was ordered and downloaded from the USGS Earth Explorer (EROS) Center Science Processing on-
demand interface (USGS, 2016). We downloaded Landsat 8 Operational Land Imager (OLI), and Landsat 5 
Thematic Mapper (TM) Surface Reflectance Higher Level data products for path 17, rows 33 and 34 for the 
summer (leaf-on) and winter (leaf-off) months of 1989, 2001, 2007, and 2018. All leaf on imagery was 
collected during either July or August, while leaf off imagery was taken from either November or January. 
These years and months were chosen for analysis due to their high radiometric fidelity across the 
aforementioned seasons and rows. We also acquired Shuttle Radar Topography Mission (SRTM V2) products 
downloaded from EROS to provide a 30-meter Digital Elevation Model (DEM) for the study area. 

Our partners at the MNF provided us with a shapefile of the administrative boundary of the national forest, as 
well as the cartographic boundary of the Sharp’s Knob restoration site. Unprocessed, high resolution (~10m 
spatial resolution) orthorectified aerial imagery of West Virginia from 2010 was also provided. Additionally, 
they provided ground truth point data of red spruce for 2013 and 2013 polygon data of dominant canopy 
cover derived from orthorectified aerial imagery. 

Appendix A, Table A1 outlines the NASA Earth observations and ancillary datasets used for this project.  

3.2 Data Processing  

Utilizing the TerrSet software from Clark Labs, ENVI 5.5, and Google Earth Engine, we processed and 
analyzed Landsat 5 TM and Landsat 8 OLI. Processed SRTM DEM, Landsat 5 TM, and Landsat 8 OLI data 
and imagery, allowed us to derive indices using the Spatial Analyst package in ArcMap and Band Math in 
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ENVI. As a standard, all geospatial data were projected into WGS 1984 UTM Zone 17N. Processing and 
analysis consisted of pre-processing for atmospheric correction, mosaicking two scenes, clipping to our study 
area, generating image derivatives, collecting training data for image classification, and image classification.  

3.2.1 Image Derivatives 

For both Landsat 5 TM and Landsat 8 OLI, we produced Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Moisture Index (NDMI), and Built Up Index (BU) and also performed a Principal 
Components Analysis for each year (Table 1). Although a Normalized Built Index (NDBI) was not included in 
analysis, it was computed in order to calculate BU. Additionally, aspect and slope were derived from the SRTM 
DEM (Figure 2). 

Table of Image Derivatives Used 

Index Formula Interpretation 

Normalized Difference 
Vegetation Index 

NDVI =  NIR -Red
NIR + Red

  
 
 
*NIR = near infrared 

High positive values near 1 indicate areas 
with productive and dense vegetation.  
Low positive values near 0 indicate 
stressed vegetation or sparse cover. 
Negative values represent non-vegetated 
areas, typically water, snow, or bare soil. 

Normalized Difference 
Moisture Index 

NDMI = NIR -SWIR
NIR + SWIR

  
 
*SWIR = shortwave 
infrared 

High positive values near 1 indicate high 
levels of soil moisture and dense canopy. 
Low positive values near 0 indicate 
average canopy cover with high water 
stress. 
Negative values indicate bare soil. 

Normalized Difference Built 
Index NDBI = 

SWIR2-NIR
SWIR2 + NIR

 
 
 
*SWIR2 = shortwave 
infrared 2 

High positive values near 1 indicate high 
reflectance areas, such as barren land and 
urban. Low positive values near 0 
indicate vegetation. 
Negative values indicate bodies of water.  

Built-up Index BU = NDBI - NDVI High positive values near 1 directly 
indicate urbanized and barren land, with 
vegetation taken out of the index. 
Negative values indicate bodies of water.  

In 

addition to the image derivatives listed above we also derived a principal components analysis (PCA) for each 
of our 4 years of multispectral imagery. Principal components analysis (PCA) is an orthogonal transformation 
that minimizes the dimensionality of large data sets based on the statistics of the data (Jolliffe, 2002). PCA 

Table 1: Vegetation indices derived from Landsat 5 TM and Landsat 8 OLI 
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transforms a number of variables in our case multispectral bands to a set of uncorrelated variables called 
principal components (PCs), all of which contains a linear composite of data variables.  

 

Figure 2:  This is a stack of the Landsat and SRTM derivatives used for the Supervised Classification. Landsat 
derivatives used in this image were from 2018 August imagery. Starting from front to back: Multispectral 

imagery (blue band to SWIR2), Elevation, Aspect, Slope, NDVI, NDMI, NDBI, and BU. 

3.3 Data Analysis 

3.3.1 Supervised Classification 
To classify the Landsat imagery, we used a Classification Tree Algorithm in TerrSet. The classification was 
conducted on imagery from the years 1989, 2001, 2007, and 2018. Six classes were identified: urban, deciduous 
tree, grass, spruce tree, water, and soil. Per our partners, we assumed the conifers present in the study area 
would be red spruce, so we did not utilize a separate class for non-spruce conifers. Red spruce training points 
were obtained via in situ partner data. Training points for all other classes were collected via digital ocular 
sampling using NAIP and aerial imagery from our partners for 2007 and 2018 (Figure 3). Digital ocular 
sampling is placing presence points over high resolution imagery that is interpreted by a person. Since NAIP 
imagery was largely unavailable for the study area in 2001 and 1989, training data was collected using various 
false color composites of Landsat 5 TM imagery. At least 120 training points were collected for each class, 
with a total of approximately 1,500 training points for each classification.   
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Figure 3: Example of digital ocular sampling using imagery of MNF obtained from our partners. Our six classes 
were identified by the following numbers: 1 = Spruce Tree, 2 = Deciduous Tree, 3 = Grass, 4 = Soil, 5 = 

Water, 6 = Urban. 

Accuracy of the classifications were determined using a base error matrix output from TerrSet. Base error 
matrices rely on splitting data points into two separate categories: training and testing. We collected over 1,000 
field and image samples for each year.  For our classification, 60% of the collected data points were used for 
training and 40% for testing. The error matrix is then calculated by dividing the number of testing pixels 
correctly categorized by the overall number of pixels used for testing.  

3.3.2 Ecological Forecasting 
To further analyze changes between 1989 and 2018 classification outputs and forecast red spruce extent to 
2040, classified images were put into TerrSet’s Land Change Modeler (LCM). For the purposes of this analysis, 
a business-as-usual (BAU) model was utilized to forecast red spruce, wherein dynamic variables such as future 
climatic scenarios or alternative management scenarios were not included. Thus, forecasting results were based 
on current management strategies and techniques throughout the study period, which include several red 
spruce restoration projects and initiatives.  
 
LCM allows analysts to comprehensively analyze land cover change by outputting cartographic and graphical 
figures of change over time using Neural Networks and Markov Chain matrices. MLP is a machine learning 
algorithm applied to LCM by modeling transition potential due to its ability to capture non-linear relationships 
(Olmedo, Mas, & Paegelow, 2013). MLP uses a back-propagation algorithm and is based on an input layer, an 
output layer and hidden layers. Hidden layers lie between input and output layers and work by taking the raw 
data from input layers and producing the output layer through the appropriate activation function (Friehat, 
Mulugeta, & Gala, 2015). LCM then uses the transition potentials as inputs into the Markov chain model, 
where gains, loses, and persistence of classes within the study area between two dates are used to predict future 
change. This culminates in a transition probability matrix, with values close to 0 representing low probability of 
transitioning and 1 representing high probabilities (Hamad, Balzter, & Kolo, 2018). A Markov chain model 
uses gains, loses, and persistence of classes within the study area from one time to another to predict future 
change. This culminates in a transition probability matrix, with values close to 0 representing low probability 
and 1 representing high probabilities of transitioning between classes (Hamad, Balzter, & Kolo, 2018). In 
addition to 1989 and 2018 classification maps, we added data layers representing distance from roads, 
elevation, aspect, and slope.  
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3.3.3 Habitat Suitability 
Finally, to determine suitable habitats for future restoration projects, we used the Fuzzy membership and 
overlay algorithms in ArcMap. Relevant variables, their membership types, and midpoint values were 
determined using a combination of relevant literature and the expert opinion of our partners (Nowacki, Carr, 
& Dyck, 2010; Nowacki & Wendt, 2010). Thus, the following inputs were utilized: elevation, slope, number of 
frost days, number of growing degree days, annual mean temperature, annual mean precipitation, and distance 
from roads, soil pH, soil’s percent silt, and soil’s percent sand. The climate data were obtained from the 
Multivariate Adaptive Constructed Analogs (MACA) which is a statistical method for downscaling Global 
Climate Models at a coarse resolution (Pierce et al. 2014). 
 
Each of the selected variables have demonstrated a statistically significant association with red spruce stands 
and present limitations to red spruce growth. Not all statistically significant variables were chosen, as it is 
unclear whether some variables – particularly soil properties such as organic matter or soil carbon stocks – are 
requisite for a suitable habitat for red spruce or whether red spruce creates a suitable habitat for the 
culmination of such soil properties. Therefore, such variables should not be included in a habitat suitability 
model without further investigation into their relationship with red spruce presence. 
       
4. Results & Discussion 
      
4.1 Analysis of Results 
 
4.1.1 Supervised Classification 
Our team made four classification maps for the years 1989, 2001, 2007 and 2018 in the Monongahela National 
Forest and Sharp’s Knob restoration area (Figure 4). The classification algorithms for our study area 
performed best when using bands 2-7 from either Landsat 5 or Landsat 8 for the leaf-on and leaf-off as well as 
a set of image derivatives. The image derivatives were an NDVI difference image computed using leaf-off 
imagery, an NDMI image for leaf-on imagery, a BU index image, and the first band of the PCA, elevation, 
slope, and aspect. Classification performance was quantitatively assessed by using an error matrix generated 
through the Errmat tool in Terrset. The overall accuracy of our six land cover classifications for our study 
years were: 83.4% (1989), 84.5% (2001), 78.6% (2007), and 80.8% (2018) (Table 2). In addition, the model’s 
overall Kappa Index of Agreement (KIA) values were 0.783006, 0.804556, 0.729678, 0.755865 respectively. 
Red Spruce ranged in accuracy from 90.1% user’s and 85.1% producer’s accuracy in 1989 to 88.9% users and 
89.4% producer’s accuracy in 2018. Our poorest performing class accuracy was grass, which had as low as 
53% accuracy in 2007.  This poorer performance could have been due to semi-grassy meadows in recovery 
stages of mine reclamation being confused with soil. Throughout all four classifications, spruce was most 
commonly confused with deciduous forest.  
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Error Matrix of 2018 Land Cover Classification 

  Urban Decid Grass Spruce Water Soil Total Error 
Commission 

User 
Accuracy 

Urban 77 0 6 1 6 6 96 0.198 0.802 
Decid 1 57 1 13 2 0 74 0.230 0.770 
Grass 7 1 26 1 6 2 43 0.395 0.605 
Spruce 3 14 1 152 0 1 171 0.111 0.889 
Water 9 3 2 3 48 0 65 0.262 0.738 
Soil 7 0 0 0 0 43 50 0.14 0.86 
Total 104 75 36 170 62 52 499   

 

Error 
Omission 

0.260 0.24 0.278 0.106 0.226 0.173   0.192 
 

Producer 
Accuracy 

0.740 0.76 0.722 0.894 0.774 0.827 
   

Table 2: Error Matrix of 2018 Land Cover Classifications. Overall Accuracy = 80.85%, Overall Kappa = 0.756. 

Land Change Modeler within Terrset was run to determine the change of red spruce extent between 1989 and 
2018 and forecast land cover changes to the year 2040. Through the early portion of our study period, red 
spruce initially declined. However, according to the model, an overall net gain of 17,777 hectares (ha) were 
reclaimed by red spruce for the entire Monongahela National Forest between 1989 and 2018 (Figure 5). Within 

Figure 4: 1989, 2001, 2007, and 2018 classification maps for both the MNF and 
Sharp’s Knob. 
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Sharp’s Knob our model predicted red spruce reclaimed 238 ha between 1989 and 2018. Spruce regeneration 
was seen along the edges of Spruce forests, where losses were seen in a less uniform manner throughout the 
forest clustered in mining regions (See Figure 6). This trend was consistent within Sharp’s Knob as well.  

 

Figure 5: Change in hectares across our classes between 1989 and 2018 with loses in red and gains in green. 
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Figure 6: Gains and losses in red spruce in the MNF (left) and Sharp’s Knob (right) between 1989 and 2018. 

Additionally, land cover increases in grass and decreases in soil were observed within the model from 1989 to 
2018. Overall, soil land cover decreased by 11,634 hectares – of which 45% (5236 ha) were specifically 
changed to grass. This is important to note as grass is one of the beginning stages of mine reclamation. 
Deciduous Forest for our study period saw a small decline of 2,039 ha throughout the entire Monongahela 
National Forest in our 30 year study period. This decline may have been attributed to areas experiencing 
transition to red spruce through recent restoration efforts.   

4.1.2 Ecological Forecasting 

Land Change modeler also forecasted changes to 2040 based on the inputs of transition potentials between the 
30 previous years of land cover inputted (Table 3). The result based on the model predicted that of the 
376,311 ha that were deciduous forest, 11% or 41,394 ha were expected to transition to red spruce based on 
the past 30 years of changes to red spruce from deciduous. Grass and soil were both predicted that negligible 
amounts would transition to red spruce habitat even in areas where red spruce was historically present. 
Additionally, this indicates that management intervention would be necessary for these areas to be optimized.  

Probability of Land Cover Change 

 Urban Deciduous 
Forest 

Grass Spruce Water Soil 
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Urban 15.88 51.12 20.71 0 11.36 0.94 
Deciduous Forest 2.93 72.06 6.55 10.87 6.17 1.42 
Grass 20.93 19.52 52.29 0 6.34 0.92 
Spruce 2.03 23.83 0.9 69.86 1.34 2.04 
Water 0.15 2.17 0.4 0.04 97.23 0 
Soil 21.53 32.89 26.46 3.67 12.48 2.96 
Table 3: Transition Probabilities Grid (values in percentage). Row represents “change from,” and columns 

represent “change to.” 

4.1.3 Habitat Suitability  

A 30 m resolution Habitat Suitability Map for 2018 was achieved via a fuzzy logic algorithm (Figure 6). Across 
the entire MNF, 30% (2,381 km2) of the forest was categorized as very high suitability, 19% high suitability 
(738 km2), 11% (1 km2) medium suitability, and 39% (1,489 km2) low suitability. The low suitability area largely 
includes roads and low elevation areas of the forest, while the high and very high suitability areas largely 
includes high elevation areas that are currently dominated by red spruce canopy cover. In Sharp’s Knob, 77% 
(3,586 ha) of the restoration area was classified as very high suitability, while 14% (654 ha) was classified as 
high suitability, 2% (139 ha) was classified as medium suitability, and 5% (248 ha) as low suitability. Of the 
high and very high suitability classifications, approximately 1,040 ha are suitable for restoration according to 
our model. 
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Figure 6: Final habitat suitability map produced for Sharp’s Knob. Red spruce extent overlaid on suitability 
analysis.  

Validation of the habitat suitability model suggested high levels of accuracy. Of the 1,284 red spruce validation 
points used for this study, 79% (1,025 points) fell within the very high classification, while 6% fell within the 
high classification. Combined, 86% (1,111 points) of the red spruce validation points fell within either a very 
high or high classification. Additionally, of the points that did not fall within a high or very high classification, 
151 points (87%) were located within red spruce core areas, but were close enough to roads to be categorized 
as within an area of low suitability. Thus, only 22 of these points were outside of red spruce core areas. 
Additional comparison of high suitability areas against red spruce core areas generated from our classification 
model further suggest high levels of accuracy. Of all areas classified as red spruce within the forest, 84% were 
classified in either very high or high suitability areas. According to our model, 982 km2 of areas classified as red 
spruce were in very high suitability areas, while 181 km2 were in high suitability areas. Combined, very high and 
high suitability areas covered 1,162 km2 out of a total of 1,386 km2 of red spruce.  

4.3 Future Work 
Classification accuracy could be improved by refining training samples with yearly in situ data points. 
Additionally, image derivatives could be expanded to include soil adjusted vegetation index (SAVI), enhanced 
vegetation index (EVI), or albedo. Other potential model inputs are roughness, curvature, depth to fragipan, 
drainage class, available water capacity, organic matter, or bulk density.  
 
A natural extension of this research involves extending our methodology to alternative study sites within the 
southern Appalachia and historical red spruce extent. Additionally, dynamic variables such as modeled climate 
variation and alternative management strategies could be added to LCM as variables in our forecasting model. 
This would allow land managers to explore the effectiveness of proposed restoration initiatives and understand 
how current red spruce extent and restoration efforts intersect with forecasted climate variation. 
 
5. Conclusions 
Historically, red spruce dominated the Monongahela National Forest landscape, but declined during twentieth 
century mining operations. Initial mining reclamation planted non-native hardwood tree species where red 
spruce are indigenous. This change in forest composition has threatened endangered species, negatively 
impacted hydrology, and interfered with carbon sequestering. Recently, recovery efforts have included 
extensive restoration projects using community engagement and preliminary geospatial analysis.  
 
NASA Earth Observations, such as Landsat 5 TM and Landsat 8 OLI, are well-equipped for remote sensing 
applications, particularly decision-support for forest restoration. This study demonstrated the applicability of 
NASA Earth Observations to classify current red spruce extent, forecast future extent, and select suitable 
habitats. Our models and analyses indicate successful restoration of red spruce extent from 1989 to 2018. 
However, according to our forecast model, current management strategies are not intensive enough to 
effectively restore red spruce to its historical extent by 2040. Our Fuzzy Logic habitat suitability analysis 
suggests that there is still a vast amount of highly suitable acreage for red spruce to reclaim.  
 
The Monongahela National Forest staff will utilize our analysis to prioritize areas of red spruce restoration in 
the most cost-effective manner. Based on our suitability analysis and the distance between stands, we were able 
to identify areas of highest opportunity for connectivity. Equipped with these tools and data, the staff can 
replicate our methodology for future restoration projects outside of Sharp’s Knob.  
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7. Glossary 
Conifer – Cone and needle bearing seed plants 
Deciduous – Tree or other plant that sheds its leaves in the fall 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
EOS – Earth observing System  
Ecological forecasting –Using knowledge of land cover, ecology and other biophysical variables to predict 
the trajectory of changes in ecosystems, ecological populations, and communities in the future in response to 
environmental factors like variation in climate 
Frost days – An observational day on which frost occurs  
Growing degree days – or GDD, a temperature metric that can be used to predict when a crop will reach 
maturity. Each day's GDD is measured by subtracting a reference temperature, which varies with plant species, 
from the daily mean temperature.  
Hardwood –angiosperm trees that produce lumber and lose their leaves in temperate and boreal forests.   
In situ – on site, ground truthed 
Landsat-5 TM – Landsat 5 Thematic Mapper (1984-2012) 
Landsat-8 OLI – Landsat 8 Operational Land Imager (2013-present) 
Normalized Difference Moisture Index (NDMI) – Used to determine water content of vegetation. It uses 
a ratio between the NIR and SWIR values in traditional fashion 
Normalized Difference Vegetation Index (NDVI) – A metric based on the NIR and Red reflectance with 
high values representing vegetative abundance  
Sentinel – European Space Agency multispectral satellite  
SOC – Soil Organic Carbon Stock 
Support vector machine – supervised learning models with associated learning algorithms that analyze data 
used for classification and regression analysis.  
 
8. References 
Busing, R. T., Solomon, A. M., McKane, R. B., & Burdick, C. A. (2007). Forest dynamics in Oregon 

landscapes: Evaluation and application of an individual‐based model. Ecological Applications, 17(7), 
1967-1981. https://doi.org/10.1890/06-1838.1 

 
Chu, T., & Guo, X. (2014). Remote sensing techniques in monitoring post-fire effects and patterns of forest 

recovery in boreal forest regions: a review. Remote Sensing, 6, 470-520. 
https://doi.org/10.3390/rs6010470 

 
Dalponte, M., Bruzzone, L., & Gianelle, D. (2008). Fusion of hyperspectral and LIDAR remote sensing data 

for classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 
1416-1427. https://doi.org/10.1109/TGRS.2008.916480 

 
Falkowski, M. J., Evans, J. S., Martinuzzi, S., Gessler, P. E., & Hudak, A. T. (2009). Characterizing forest 

succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment, 
113(5), 946-956. https://doi.org/10.1016/j.rse.2009.01.003 

 

https://doi.org/10.1890/06-1838.1
https://doi.org/10.1109/TGRS.2008.916480
https://doi.org/10.1016/j.rse.2009.01.003


14 
 

Ford, M. W., Moseley, K. R., Stihler, C. W., & Edwards, J. W. (2010). Area occupancy and detection probabilities of 
the Virginia Northern Flying Squirrel (Glaucomys sabrinus fuscus) using nest-box surveys (General Technical 
Report NRS-P-64). Newtown Square, PA: US Department of Agriculture, Forest Service, Northern 
Research Station. Retrieved from https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-64papers/06-ford-p-
64.pdf 

 
Friehat, T., Mulugeta, G., & Gala, T. S. (2015). Modeling urban sprawls northeastern Illinois. Journal of 

Geosciences and Geomatics, 3(5), 133-141. https://doi.org/10.12691/jgg-3-5-4 
 
Gundy, M. T.-V., Strager, M., & Rentch, T. (2012). Site characteristics of red spruce witness tree locations in 

the uplands of West Virginia, USA. Journal of the Torrey Botanical Society, 139(4), 391-405. 
https://dx.doi.org/10.3159/TORREY-D-11-00083.1  

 
Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov Model 

under two different scenarios. Sustainability, 10: 3421-3443. https://doi.org/10.3390/su10103421 
 
Hart, A. C. (1959). Silvical characteristics of red spruce (Picea rubens) (Station Paper NE-124). Upper Darby, PA: US 

Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. Retrieved from 
https://www.fs.usda.gov/treesearch/pubs/13710 

 
Hart, S. J., & Veblen, T. T. (2015). Detection of spruce beetle-induced tree mortality using high-and medium-

resolution remotely sensed imagery. Remote Sensing of Environment 168, 134-145. 
https://doi.org/10.1016/j.rse.2015.06.015 

Jolliffe, I., T., (2002). Principal Component Analysis (2nd ed.). New York City, NY: Springer. Available from: 
http://cda.psych.uiuc.edu/statistical_learning_course/Jolliffe%20I.%20Principal%20Component%20
Analysis%20%282ed.,%20Springer,%202002%29%28518s%29_MVsa_.pdf 

Kautz, S. (2017). Landsat 4-5 Thematic Mapper (TM) Level-1 [Data set]. U.S. Geological Survey. 
https://doi.org/10.5066/f7n015tq 

Kautz, S. (2018). Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) [Data set]. 
U.S. Geological Survey. https://doi.org/10.5066/f71835s6 

 
Lynch, C., & Hessl, A. (2010). Climatic controls on historical wildfires in West Virginia, 1939-2008. Physical 

Geography, 31(3), 254-269. https://doi.org/10.2747/0272-3646.31.3.254 
 
Makoto, K., Tani, H., & Kamata, N. (2013). High-resolution multispectral satellite image and a postfire ground 

survey reveal prefire beetle damage on snags in Southern Alaska. Scandinavian Journal of Forest Research, 
28(6), 581-585. https://doi.org/10.1080/02827581.2013.793387 

 
Mockrin, M. H., Lilja, R. L., Weidner, E., Stein, S. M., & Carr, M.A. (2014). Private forests, housing growth, and 

America’s water supply: A report from the Forests on the Edge and Forests to Faucets Projects (General Technical 
Report RMRS-GTR-327). Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky 
Mountain Research Station. Retrieved from https://www.fs.usda.gov/treesearch/pubs/47201 

 
Nauman, T. W., Thompson, J. A., Teets, S. J., Dilliplane, T. A., Bell, J. W., Connolly, S. J., … Yoast, K. M. 

(2015). Ghosts of the forest: Mapping pedomemory to guide forest restoration. Geoderma, 247-248, 51-
64. https://doi.org/10.1016/j.geoderma.2015.02.002 

 
Nowacki, G., Carr, R., & Dyck, M. V. (2010). The current status of red spruce in the Eastern United States: Distribution, 

population trends, and environmental drivers (General Technical Report NRS-P-64). Newtown Square, PA: 

https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-64papers/06-ford-p-64.pdf
https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-64papers/06-ford-p-64.pdf
https://www.fs.usda.gov/treesearch/pubs/13710
https://doi.org/10.1016/j.rse.2015.06.015
http://cda.psych.uiuc.edu/statistical_learning_course/Jolliffe%20I.%20Principal%20Component%20Analysis%20%282ed.,%20Springer,%202002%29%28518s%29_MVsa_.pdf
http://cda.psych.uiuc.edu/statistical_learning_course/Jolliffe%20I.%20Principal%20Component%20Analysis%20%282ed.,%20Springer,%202002%29%28518s%29_MVsa_.pdf
https://doi.org/10.2747/0272-3646.31.3.254
https://doi.org/10.1080/02827581.2013.793387
https://www.fs.usda.gov/treesearch/pubs/47201
https://doi.org/10.1016/j.geoderma.2015.02.002


15 
 

US Department of Agriculture, Forest Service, Northern Research Station. Retrieved from: 
https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-64papers/35-pauley-p-64.pdf 

 
Nowacki, G., & Wendt, D. (2010). Overview of the status of the Cheat Mountain Salamander (General Technical 

Report NRS-P-64). Newtown Square, PA: US Department of Agriculture, Forest Service, Northern 
Research Station. Retrieved from https://www.fs.usda.gov/treesearch/pubs/36071 

 
Olmedo, C. M. T., Paegelow, M., Mas, J. F. (2013) Interest in intermediate soft-classified maps in land change 

model validation: suitability versus transition potential. International Journal of Geographical Information 
Science, 27(12): 2343–2361. http://dx.doi.org/ 10.1080/13658816.2013.831867 

 
Pauley, T. K. (2010). Characterization of the ecological requirements for three plethodontid salamander species (General 

Technical Report NRS-P-64). Newtown Square, PA: US Department of Agriculture, Forest Service, 
Northern Research Station. Retrieved from https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-64papers/47-
wooten-p-64.pdf 

 
Pierce, D. W., Cayan, D. R., & Thrasher, B. L. (2014). Statistical downscaling using localized constructed 

analogs (LOCA). Journal of Hydrometeorology, 15(6), 2558-2585. https://doi.org/10.1175/JHM-D-
14-0082.1 

 
Sams, J. I., & Beer, K. M. (2000). Effects of coal-mine drainage on stream water quality in the Allegheny and Monongahela 

River basins—Sulfate transport and trends (Water Resources Investigations Report, 99-4208). Reston, VA: 
US Geological Survey. https://doi.org/10.3133/wri994208 

 
Soleimannejad, L., Ullah, S., Abedi, R., Dees, M., & Koch, B. (2019). Evaluating the potential of Sentinel-2, 

Landsat-8, and irs satellite images in tree species classification of Hyrcanian forest of Iran using 
random forest. Journal of Sustainable Forestry, 38(6). https://doi.org/10.1080/10549811.2019.1598443 

 
Nauman, T. W., & Connolly, S. J. (2014). Red spruce (Picea rubens) influence on soil organic carbon (SOC) 

stocks. Elkins, WV: Monongahela National Forest. Retrieved from: 
http://restoreredspruce.org/wp/wp-
content/uploads/2014/06/white_paper_spruce_soil_carbon_fs_wvu_general_2014.pdf 

 
Vickers, L. A., McWilliams, W. H., Knapp, B. O., D'Amato, A. W., Saunders, M. R., Shifley, S. R., … Westfall, 

J. A. (2019). Using a tree seedling mortality budget as an indicator of landscape-scale forest 
regeneration security. Ecological Indicators, 96, 718-727. https://doi.org/10.1016/j.ecolind.2018.06.028 

 
Wooten, J. A., Sutton, W. B., & Pauley, T. K. (2010). The current distribution, predictive modeling, and restoration 

potential of red spruce in West Virginia (General Technical Report NRS-P-64). Newtown Square, PA: US 
Department of Agriculture, Forest Service, Northern Research Station. Retrieved from 
https://www.fs.usda.gov/treesearch/pubs/36071 

 
Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., & Roy, D. P. 

(2016). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 
185, 271-283. https://doi.org/10.1016/j.rse.2015.11.032 

 
Xie, Z., Chen, Y., Lu, D., Li, G., & Chen, E. (2019). Classification of land cover, forest, and tree species classes 

with ZiYuan-3 multispectral and stereo data. Remote Sensing, 11(2), 164. 
https://doi.org/10.3390/rs11020164  

https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-64papers/35-pauley-p-64.pdf
https://www.fs.usda.gov/treesearch/pubs/36071
https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-64papers/47-wooten-p-64.pdf
https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-64papers/47-wooten-p-64.pdf
https://doi.org/10.3133/wri994208
https://doi.org/10.1080/10549811.2019.1598443
http://restoreredspruce.org/wp/wp-content/uploads/2014/06/white_paper_spruce_soil_carbon_fs_wvu_general_2014.pdf
http://restoreredspruce.org/wp/wp-content/uploads/2014/06/white_paper_spruce_soil_carbon_fs_wvu_general_2014.pdf
https://doi.org/10.1016/j.ecolind.2018.06.028
https://www.fs.usda.gov/treesearch/pubs/36071
https://doi.org/10.1016/j.rse.2015.11.032
https://doi.org/10.3390/rs11020164


16 
 

9. Appendices 
 
Table A1 
Earth Observations and Ancillary Data 

Platform & Sensor Parameters Use 

Landsat 5 TM surface reflectance, NDVI, 
NDMI, NDBI, and BU 

Landsat 5 TM data were used to analyze land cover 
(1989, 2001, 2007), and land cover change and create 
image derivatives such as NDVI and NDMI for 
forecast inputs.   

Landsat 8 OLI surface reflectance, NDVI, 
NDMI, NDBI, and BU 

Landsat 8 OLI data were used to analyze land cover 
(2018), and land cover change and create image 
derivatives such as NDVI and NDMI for forecast 
inputs 

SRTM  
elevation, slope, aspect  

This dataset was used to determine topographic 
derivatives that are correlated with the classification 
of red spruce and habitat suitability analysis.   

Ancillary Data Parameters Use 
NAIP high-resolution imagery (1 

meter) 
This dataset provided high-resolution imagery for 
the collection of training and testing points via 
digital ocular sampling.  
 

MACA Multivariate Adaptive 
Constructed Analogs 
Global Climate Model 
Datasets (Growing Degree 
Days, Frost free days, 
Annual Mean 
Temperature, Annual 
Mean Precipitation) 1971-
2000 

These datasets provided regional climatic variables 
for the habitat suitability analysis at a 4km 
resolution. Climatic variables were derived using the 
MACA statistical method, wherein globally fitted 
climate models are downscaled for national and 
regional use.  

USDA Land Cover Data USFS Monongahela 
National Forest in situ 
datasets 

These datasets include point data for red spruce, in 
addition to polygon coverage of other species to be 
used in the classification algorithm. 

ISRIC Soil Data Soil pH, soil’s % silt, soil’s 
% sand 

These datatsets provided 250m resolution of 
predicted soil properties and classifications based on 
fitted models. Data were utilized as inputs into the 
habitat suitability model. 
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Table A2 2007 Error Matrix  
  Urban Decid Grass Spruce Water Soil Total Error 

Commission 
User 
Accuracy 

Urban 70 0 4 0 3 13 90 0.222222 0.777778 
Decid 5 64 0 17 1 0 87 0.264368 0.735632 
Grass 12 0 28 4 4 4 52 0.461538 0.538462 
Spruce 2 10 1 146 1 1 161 0.093168 0.906832 
Water 7 1 3 2 53 3 69 0.231884 0.768116 
Soil 8 0 0 1 0 31 40 0.225 0.775 
Total 104 75 36 170 62 52 499 

 
1 

Error 
Omission 

0.326923 0.146667 0.222222 0.141176 0.145161 0.403846 
 

0.214429 0.785571 

Producer 
Accuracy 

0.673077 0.853333 0.777778 0.858824 0.854839 0.596154 
   

 
Table A3 2001 Error Matrix 

  Urban Decid Grass Spruce Water Soil Total Error 
Commission 

User 
Accuracy 

Urban 56 0 2 0 0 6 64 0.125 0.875 
Decid 0 71 1 27 1 0 100 0.29 0.71 
Grass 5 0 30 0 0 3 38 0.210526 0.789474 
Spruce 0 11 0 145 1 0 157 0.076433 0.923567 
Water 1 0 0 1 49 0 51 0.039216 0.960784 
Soil 4 0 6 2 0 42 54 0.222222 0.777778 
Total 66 82 39 175 51 51 464 

  

Error 
Omission 

0.1515 0.1341 0.2307 0.17142 0.03921 0.17647 
 

0.153017 
 

Producer 
Accuracy 

0.8484 0.8658 0.7692 0.82857 0.96078 0.82352 1 0.846983 0.848485 

 
Table A4 1989 Error Matrix 

  Urban Decid Grass Spruce Water Soil Total Error 
Commission 

User 
Accuracy 

Urban 61 7 10 0 0 0 78 0.217949 0.782051 
Decid 1 72 0 31 0 3 107 0.327103 0.672897 
Grass 6 0 45 0 0 0 51 0.117647 0.882353 
Spruce 0 14 0 184 0 6 204 0.098039 0.901961 
Water 0 1 4 1 49 1 56 0.125 0.875 
Soil 5 0 2 0 0 46 53 0.132075 0.867925 
Total 73 94 61 216 49 56 549    
Error 
Omission 0.1643 0.2340 0.2622 0.14814 0 0.17857   0.167577 

 
Producer 
Accuracy 0.8356 0.7659 0.7377 0.85185 1 0.821429   0.832423 
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