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1. Abstract 
Evapotranspiration (ET) is a key indicator of hydrological balance across different ecosystems. Water 
availability is a vital ecosystem service for biota and communities. The transpiration and evaporation of water 
from vegetation and soil can be estimated through in situ ET measurements. However, in situ ET data 
sampling represents an expensive and challenging task, especially in geographically remote areas. Models used 
in this study utilized data from sensors aboard multiple NASA satellites including, Landsat 8, Aqua, and 
Terra. Two models, Operational Simplified Surface Energy Balance (SSEBop) and Moderate Resolution 
Imaging Spectroradiometer (MODIS) Global ET Project (MOD16) were validated by the Fall 2018 NASA 
DEVELOP Idaho Water Resources II team. The Global Land Data Assimilation Noah evapotranspiration 
(GLDAS-2-Noah) was validated in Reynolds Creek Experimental Watershed (RCEW) by our Argentina 
Water Resources team. SSEBop, MOD16, and GLDAS-2-Noah were applied in two study areas: Paraná, 
province Entre Ríos, Argentina, a humid subtropical (Pampean) bioregion, and the Patagonia Steppe in 
Argentina, a semi-arid region, climatically similar to the validation site at RCEW. Validation and 
implementation of the models applied in this study will allow our partners at Consejo Nacional de 
Investigaciones Científicas y Técnicas (CONICET) and land managers in Argentina to use the model that 
best suits their needs while also making empirically based decisions regarding water resources.   

Keywords 
evapotranspiration, remote sensing, Landsat , climate, energy balance model, water balance 
 
2. Introduction 
 
2.1 Background Information 
The primary focus of hydrologic studies has been on the supply side of water and not the demand side that 
includes Evapotranspiration (ET; Fisher et al., 2017). ET is the transport of water from different land 
surfaces to the atmosphere (United States Geological Survey, 2016). The water is converted to water vapor 
through the processes of evaporation, the physical process, and transpiration, the biological process 
(Stancalie, 2012). Within the hydrological cycle, ET is an important flux responsible for an estimated 60% of 
all terrestrial precipitation returned to the atmosphere (Zeng, 2012). ET measurements often give an 
indication of water balance and are an essential component of the hydrological cycle (Gavilán, Pastore, 
Quignard, Marasco, & Aceñolaza, in review). Obtaining empirical data from remote locations such as the semi-
arid landscape of the Patagonia Steppe, which comprises 15% of Argentina, approximately 119 million acres 
(Fernandez & Busso, 1999), provides a challenge to land managers. Land managers rely on remotely sensed 
data sets during their decision making process due to the expenses and time associated with in situ data 
collection in remote locations. To improve the ability of land managers to make empirically based 
management decisions, high spatial and temporal resolution datasets are needed to understand the hydrologic 
cycle and annual water availability across remote and expansive landscapes.  
 
In fall 2018, the Idaho Water Resources II team investigated remotely sensed ET models derived from 
remotely sensed NASA Earth observation data for the semi-arid sagebrush steppe of Idaho. The team used in 
situ data from eddy covariance towers at Reynolds Creek Experimental Watershed (RCEW) in southwest 
Idaho, to validate four ET models: Google Earth Engine Evapotranspiration Flux (EEFLUX), Operational 
Simplified Surface Energy Balance (SSEBop), Moderate Resolution Imaging Spectroradiometer (MODIS) 
Global Evapotranspiration Project (MOD16), and the North American Land Data Assimilation Systems 2 
Noah (NLDAS-2-Noah). A simple regression analysis between the ET models and in situ data showed the 
highest correlations between NLDAS-2-Noah (RP

2
P of 0.70-0.87) and EEFLUX (RP

2
P of 0.32-0.83). The lowest 

correlations were found with SSEBop (RP

2
P of 0.21-0.85) and MOD16 (RP

2
P of 0.04-0.61). The work completed 

by the Idaho Water Resources II team demonstrated the potential application of various ET models in semi-
arid landscapes. 
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Figure 1. The first study area encompasses a 10-km radius circle in the Paraná region, Entre Ríos province, 

Argentina, South America.  The green zone corresponds to the country of Argentina. The green dot indicates 
the Paraná location. (Image Source: Google Earth Pro, Digital Globe 2019. Coordinate System: GCS WGS 

1984, Datum WGS 1984, Units: Degree). 
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Figure 2. The second study area encompasses a 10-km radius circle in the Patagonia Steppe region, Argentina, 

South America.  The green zone corresponds to the country of Argentina. The purple area represents the 
entire semi-arid steppe region. The green dot indicates the Patagonia Steppe location.  

(Image Source: Google Earth Pro, Digital Globe 2019. Coordinate System: GCS WGS 1984, Datum WGS 
1984, Units: Degree). 

 
Our Paraná, Argentina study area (Figure 1) is within an extensive agricultural region, primarily consisting of 
corn and soy. With global temperatures predicted to increase (Diffenbaugh & Giorgi, 2012) and shifts in 
precipitation regimes expected to occur (Trenberth, 2011) in a response to climate change, understanding ET, 
a vital constituent in the water cycle, is important when implementing water management strategies in 
agricultural regions. It is predicted that climate change will negatively affect water availability for vegetation by 
reducing precipitation and subsequent infiltration of water and by increasing temperature and atmospheric 
COR2R fertilization that will increase reference evapotranspiration and vegetation growing capabilities (Pereira, 
2011; Saadi et al., 2015). Research presented in this study can help land managers monitor shifts in hydrologic 
regimes and ET by implementing various validated ET models used in this study in the humid subtropical 
agricultural bioregion of Paraná, Argentina. 
 
Both our Patagonia Steppe, Argentina study area (Figure 2) and our validation site, RCEW, are semi-arid 
regions. A land cover description for RCEW is presented in detail in Lauer, Jurkowski, Macek & Zurek 
(2018). Higher elevations in RCEW consist of various sage brush species and lower elevations consist of 
shrub species. Vegetation of the Patagonia Steppe is characterized by a semi-arid Monte rangeland, which 
constitutes a majority of arid rangeland in the country. The climate is dry and warm and becomes cooler 
towards the south. Monte vegetation consist of steppe scrub dominated by microphyllous xerophytic shrubs 
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1 to 3 m in height. Some plant species are short-lived summer or winter species whose abundance are strictly 
dependent on seasonal rainfall. (Fernandez & Busso, 1999).  
 

The Patagonia Steppe study area was determined by analyzing the Köppen-Geiger climate classification map 
of Argentina (Beck et al., 2018), a climate classification map from an Argentinean science education resource 
(García, 2019), and using climatological analysis of precipitation data over RCEW and the semi-arid Patagonia 
Steppe region.  

Climate classification maps were visually analyzed to investigate exactly what regions were semi-arid and what 
regions were considered steppe environments in Argentina. After identifying an optimum region to select a 
location we used precipitation to narrow our selection further. We used CMAP monthly standard mean 
precipitation rate data from NOAA/OAR/ESRL PSD, Boulder, CO, USA, to investigate precipitation over 
our validation site and Patagonia Steppe study area. CMAP precipitation values are estimated based on 
satellite data and gauge data at a spatial resolution of 2.5 x 2.5degree (NOAA, 2019). This then allowed us to 
pick a location in the Patagonia Steppe with a similar average monthly precipitation rate to our RCEW 
validation site for the peak month of each locations res pective water year high point.  

 

 

 

 

 

 

 

 

 

  

Average Monthly Precipitation Rate (mm/day) 

 0        1  2      3  4    5 
Figure 3. Maps of 
monthly precipitation 
rate (mm/day) over the 
semi-arid Patagonia 
(top) Steppe in January 
2017, and RCEW (right) 
for June 2017. Area not 
to geographical scale 
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2.2 Project Partners & Objectives 
CONICET is tasked with the promotion of science and technology within Argentina. Currently, models exist 
to measure ET for homogeneous agricultural lands, but many are generally untested for use in natural 
spatially heterogeneous land cover. In addition, some models tend to overestimate ET flux values, especially 
across heterogeneous natural systems, for example, Penman and Bartholic-Namken-Wiegand models in semi-
arid environments (DehghaniSanij, Yamamoto, & Rasiah., 2004; Hatfield, Reginato, & Idso et al., 1984), or 
Penman-Monteith in arid regions (Zhang, Kang, & Zhang, 2008). Dr. Pablo G. Aceñolaza and Sebastián 
Anibal Gavilán, current researchers for CONICET, were interested in using methods developed for the 
Snake River Plane, a semi-arid sagebrush steppe environment of western Idaho, to better understand water 
availability and transport in Argentina’s Patagonia Steppe. Specifically, Dr. Aceñolaza is aiming to compare 
the ET models validated by the Idaho Water Resources II team (Lauer, Jurkowski, Macek, & Zurek, 2018), 
and one validated in this study, with his existing regional model. The collaboration between the NASA 
DEVELOP Idaho, Pocatello Node and CONICET provided a critical next step in the validation of these ET 
products and will allow CONICET to determine which models correlate best for use in areas that have 
limited in situ measurements. Providing researchers and land and resource managers with a calibrated 
methodology for effectively modeling ET rates and soil moisture utilizing NASA Earth observations will 
allow for the development of more targeted and effective water conservation strategies. 
 
3. Methodology 
 
3.1 Data Acquisition  
The team analyzed data from three ET models: two from the Idaho Water Resources II project, and one new 
model. The study period of this project was from 2015 to 2017. Spatial and temporal resolutions varied 
between the ET models. Resolutions ranged from 500 m (MOD16) to ~28 km (GLDAS-2-Noah), shown in 
Figure 3. Temporal resolutions ranged from 3 hours (GLDAS-2-Noah) to 10 days (SSEBop). Operational 
Simplified Surface Energy Balance (SSEBop) ET estimates were collected from the United States Geological 
Survey via the Google Earth Engine (GEE) App, Climate Engine. SSEBop has a temporal resolution of 10 
days, data reported in 10-day cumulative values, and a spatial resolution of 1 km. This product is derived from 
Aqua and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data (MYD16A2: MODIS/Aqua 
Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006; Mu, Zhao, & Running, 2017). MOD16 ET 
was collected from GEE (MOD16A2: MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN 
Grid V006; Mu, Zhao, & Running, 2017). MOD16 data is a derived product with temporal resolution of eight 
days and a spatial resolution of 500 m. ET values are reported in eight-day cumulative ET. GLDAS-2-Noah 
Actual ET data were collected from NASA Giovanni (Global Land Surface Model L4 three Hourly 0.25 x 
0.25 degree V002; Wang, Cui, Wang, & Chen, 2016). An Ancillary dataset was used to identify a Patagonia 
Steppe location. Standard monthly mean precipiation rate from the National Oceanic and Atmospheric 
Administration’s (NOAA) Oceanic and Atmospheric Research(OAR)/Earth System Research 
Laboratory(ESRL)/Physical Sciences Division(PSD) CPC Merged Analysis of Precipitation (CMAP)(spatial 
resolution of 2.5 x 2.5 degree with units of mm/day)(NOAA, 2019).  
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it.] 

 
Figure 4. Comparison of spatial resolution of the three ET models in both study locations. Resolutions from 

left to right, MOD16 500 m, SSEBop 1 km, GLDAS-2-Noah ~28 km. The ET scale bar is relative and 
reported ET value ranges differ between study area. Numerical ET values are shown in the time series data. 

 
Validation datasets for the RCEW were acquired from the Idaho Water Resources II team and included in situ 
meteorological and ET (eddy covariance flux towers) data for the period of 2015 to 2017.  
 
3.2 Data Processing 
The team used Esri ArcMap 10.6.1, ArcGIS Pro, and MS Office Excel, for spatial analysis of vectorial and 
raster data, as well as complementary processing of satellite-derived data, in situ data, and model outputs. 
ArcMap and ArcGIS Pro were also utilized to spatially process model output data layers including 
delimitation (clipping) and georeferencing (orthorectification) of study areas. Panoply 4.10.4 was used to 
visualize precipitation data to determine the Patagonia Steppe extent.  
 
In order to have a standard time metric for the posterior systematic comparison, we calculated cumulative 
monthly ET values for all three models. We applied corresponding mathematical operations for the different 
temporal features: 8-day (MODIS), 10-day (SSEBop), and 3-hour (GLDAS-2-Noah). Using the R platform 
we aggregated the data into monthly basis and exported into csv files. These monthly values were sorted into 
corresponding water years for humid subtropical and semi-arid climates (corresponding to Paraná and 
Patagonia regions), then we generated annual time series to analyze seasonal and monthly patterns of ET. 
Because study sites were in a different hemisphere than the validation site, time series were reported in water 
year. The water year for Argentina is July-June and the water year for RCEW is from October-September. A 
detailed analysis and discussion about the validation done by the Idaho Water Resources II team can be 
found in Lauer et al. (2018).  These time series were used for the final statistical analysis.   
 
3.3 Data Analysis 
Since each ET model has varying temporal resolutions (Table A1), we calculated the monthly average ET 
(mean). Statistical correlation analysis was performed using a linear regression and ANOVA (ANalysis Of 
VAriance). The coefficient of determination (rP

2
P) and standard deviation (s) were extracted from the regression 

analyses and the ANOVA table and compared to determine the most accurate models. We evaluated the 
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accuracy of GLDAS-2-Noah using in situ data from RCEW through three categories: weak (rP

2
P<=0.3), 

moderate (0.3 < rP

2
P <= 0.7), and strong (rP

2
P>0.7). 

 
Next, Kruskal-Wallis test and a Student’s t post hoc test were applied to the time series data to understand 
the relationship between the three models and their ability to predict ET in relation to each other. The 
Kruskal-Wallis test assumes a null hypothesis that all model medians are equal. The result provides a p value. 
The p value is considered significant if that number is below 0.05. To determine the difference between the 
models a Student’s t post hoc test was done. The post hoc test tells us the p value between each pair of 
models (see section 4.1.4).   
 
4. Results & Discussions 
 
4.1 GLDAS-2-Noah 
The North American Land Data Assimilation System (NLDAS) ET output had strong correlations with in 
suit eddy covariance data (rP

2
P of 0.7-0.87; Lauer et al. 2018). However, this dataset is not available in our 

Argentina study regions. Instead, GLDAS-2-Noah ET data were validated in RCEW with the same 
methodologies used by the Idaho Water Resources II team and then applied to our study areas in Argentina. 
GLDAS-2-Noah has the lowest spatial resolution of the models in the study at ~28 km, but it has the highest 
temporal resolution at 3 hours. Monthly summed ET regression coefficients for the study period ranged from 
0.26 to 0.84 (0.43-0.84 for the 2017 water year; Figure 3). The time series analysis display a similar trend 
between the two study areas where ET is low in the beginning of the water year, increases during the growing 
season, and decreases after January until the start of the new water year. Peak ET values were reached at 
different months during both study years at both study areas. Paraná ET reached its maximum monthly sum 
in December and November in 2016 and 2017 respectively. Patagonia Steppe ET reached its maximum ET 
values in January and October in 2016 and 2017 respectively. As expected, ET values in Paraná were higher 
than the Patagonia Steppe, at times doubling total monthly cumulative ET (November; Figure 4). Similar to 
the NLDAS dataset, the GLDAS-2-Noah ET product assimilates meteorological datasets from across the 
earth. Therefore, high regression coefficients may be a product of these datasets and may not produce 
accurate results in regions that lack meteorological stations. Lower correlations may be the result of the lower 
spatial resolution of the data. A single pixel of the GLDAS-2-Noah ET output covered the entire RCEW 
validation site. Averaging ET over an area covered by GLDAS-2-Noah may artificially increase or decrease 
resulting ET outputs depending on the dominant land cover in each respective pixel.  
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Figure 5. GLDAS-2-Noah modeled ET vs. RCEW ET regression analysis for the 2017 water year 

 

 

Figure 6. A) GLDAS-2-Noah time series for the water years 2016 (purple) and 2017 (blue) in Paraná. B) 
GLDAS-2-Noah time series for the water years 2016 (purple) and 2017 (blue) in the Patagonia Steppe. 

 
 
4.2 SSEBop 
Time series show an increase of ET to the peak of the growing season (January) in Paraná and a decrease in 
ET following the growing season (Figure 5a). Patagonia Steppe 2016 ET increased greatly after September 
until November. ET decreased following November but has a secondary spike in January. A substantial 
decrease in ET is seen following January until a third spike in April. 2017 ET data from the Patagonia Steppe 
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increase rapidly in September and decreases for the remainder of the year with small ET spikes in February, 
April, and June (Figure 5b). 
 

Figure 7. A) SSEBop time series for the water years 2016 (purple) and 2017 (blue) in Paraná. B) SSEBop time 
series for the water years 2016 (purple) and 2017 (blue) in the Patagonia Steppe. 

 
 
4.3 MOD16 
ET values in Paraná display a trend with an increase in ET and peaks during the growing season followed by 
a decrease in ET. ET does not drop below 55 mm during either year of our study period. ET in the Patagonia 
Steppe shows no definite trend in monthly values. A distinct increase in ET occurs in February and a distinct 
decrease in ET occurs in March in 2016 and 2017 respectively. Patagonia ET values do not drop below 40 
mm during either year of our study (Figure 6).  
 

 

Figure 8. A) MOD16 time series for the water years 2016 (purple) and 2017 (blue) in Paraná. B) MOD16 time 
series for the water years 2016 (purple) and 2017 (blue) in the Patagonia Steppe. 

 
 
4.4 Kruskal-Wallis Analysis of ET Models 
A Kruskal-Wallis test was run to determine whether the medians of the models were similar in each study 
area. The data met all assumptions of the Kruskal-Wallis test except the assumption of homogenous variance. 
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To test the relationship of the two models we ran a Student’s t test which individually compared the models 
to one another for Paraná and the Patagonia Steppe. Figures 8 and 9 show how MOD16 is different from 
SSEBop and GLDAS-2-Noah at both Paraná and Patagonia respectively. Table 1 shows that the Kruskal-
Wallis test in Paraná for two water years resulted in a p value of 0.009, which gives 99% certainty that the 
models are statistically different and the same test in the Patagonia Steppe had a p value of 0.0011, a 99% 
significant level, again showing that the models are statistically different. For both study areas the null 
hypothesis was rejected, which states the medians of all groups are the same. The results for the Student’s t 
test for Paraná (Table 1) showed that MOD16 when compared to SSEBop for two water years had a p value 
of 0.0001 while MOD16 when compared to GLDAS-2-Noah had a p value of 0.0035, a 99% significant level. 
Thus we can say MOD16 is significantly different from SSEBop and GLDAS-2-Noah. SSEBop and 
GLDAS-2-Noah in Paraná had a p value of 0.2927, which is not statistically different. The Student’s t test 
results are similar in Patagonia with MOD16 once again being significantly different having p values of 0.0078 
and 0.0018 from SSEBop and GLDAS-2-Noah giving once again a 99% significant level.      
 

 
 

Figure 9. Kruskal-Wallis and Student’s t tests for the Paraná study area.  

 
 

Figure 10. Kruskal-Wallis and Student’s t tests for the Patagonia Steppe study area.  
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Paraná               Patagonia Steppe 

Wate
r 

Year
s 

Kruskal
- Wallis 

Student’s t  Water 
Years 

Kruskal-
Wallis 

Student’s t 

 
All 

Models 
MOD1

6 vs. 
SSEBo

p 

MOD1
6 vs. 

GLDA
S-2-

Noah 

GLDAS-
2-Noah 

vs. 
SSEBop 

 All Models MOD16 
vs. 

SSEBop 

MOD16 
vs. 

GLDAS-
2-Noah 

GLDAS- 2-
Noah vs. 
SEEBop 

Two 
Water 
Years 

0.0009** 0.0001*
* 

0.0035*
* 

0.2927 Two 
Water 
Years 

0.0011** 0.0079** 0.0018** 0.6163 

2016 0.0144* 0.0032*
* 

0.0181* 0.4939 2016 0.0418* 0.0615 0.0229* 0.6553 

2017 0.0523 0.0169* 0.0920 0.4400 2017 0.0139* 0.0540 0.0301* 0.7906 

* Significant Level at 95% 

** Significant Level at 99% 

 
Table 1. Results from the Kruskal-Wallis and Student’s t test for Parana on the left and the Patagonia Steppe 

on the right. 
 
 
4.5 Future work 
The ET models used in this study have been previously validated in RCEW. However, our study areas and 
validation site for this project are in different hemispheres. Validating various ET models using in situ 
equipment (eddy covariance tower) from a semi-arid region in the southern hemisphere may help land 
managers explore the applicability of ET models in geographically different but biophysically similar regions. 
There is also a continued interest in using the Spaceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS) to determine ET across different environments.  

Currently, time series from the modified SEBAL model developed by our partners at CONICET, are not 
available. Developing a method to automate the process of image downloading and raster processing would 
allow our partners to apply their model across larger spatial extents and temporal timescales. 

Because climate change is expected to influence global temperatures and precipitation regimes (Diffenbaugh 
& Giorgi, 2012; Pereira, 2017; Saadi et al., 2014; Trenberth, 2011), Analyzing long-term time series can help 
land managers understand shifts in hydrologic regimes as a response to shifting climates. Long-term data 
analysis in both Argentina and RCEW can make clear the differences in water availability in response to 
changing climate. 
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5. Conclusions 
In our investigation of ET models we came to four main conclusions. The first being, MOD16 is significantly 
different from other models across both study areas. This could indicate that MOD16 uses a different 
equation or different variables when measuring ET. Secondly, GLDAS-2-Noah and SSEBop have no 
statistically significant difference for either study area. The third conclusion is that GLDAS-2-Noah and 
SSEBop have the potential to be applied to a semi-arid region like the Patagonia Steppe. Lastly, we would 
purpose the development of a hybrid model for GLDAS-2-Noah and SSEBop.  

MOD16 was found to be statistically significant different from both GLDAS-2-Noah and SSEBop in the 
Paraná and the Patagonia Steppe with a 99% significant level according to the Student’s t post hoc test for 
two water years (2016, 2017). This could indicate that MOD16 either uses different variables than the other 
models, or it could be a factor of MOD16 base equation, the Penman-Monteith equation. There is also 
inherent error with MOD16 as it tends to overestimate ET values, which is to be expected because the 
Penman-Monteith equation over estimates ET values in heterogeneous environments (DehghaniSanij et al., 
2004).  

GLDAS-2-Noah and SSEBop showed no statistically significant difference of ET values for either study area. 
Due to their statistical similarity GLDAS-2-Noah and SSEBop have the potential to be applied in a semi-arid 
study region like the Patagonia Steppe. Furthermore, a model could be developed that utilizes the important 
aspects of the two. GLDAS-2-Noah and SSEBop performed well over the semi-arid study region for this 
project. We would purpose developing a model that combines the temporal resolution of GLDAS-2-Noah 
and the spatial resolution of SSEBop. This model would be optimum for regional or global investigations of 
ET, and could be an effective way to measure ET more accurately. This hybrid model would likely be 
applicable in semi-arid study regions based on the individual models’ performances in the Patagonia Steppe 
and in RCEW. We must keep in mind there could be error due a large difference in spatial resolution, 1km 
and 28km respectively. But this model would be a good combination of an energy balance model and 
estimated and observed ET measurements.  

Throughout this project we have investigated the applicability of three different models in our study areas. 
With our analysis we discovered that GLDAS-2-Noah and SSEBop are statistically similar, and therefore have 
the highest confidence for use in a semi-arid region. GLDAS-2-Noah has better temporal resolution, but 
poor spatial resolution compared to that of SSEBop. SSEBop could allow for a more detailed spatial 
investigation for utilization by land managers. Both models can be applied in these kinds of locations to aid in 
decision making processes surrounding water availability.  Use of either model would be beneficial in the 
advancement of studying ET across the global.  

In general, monthly ET values during the study period in Paraná are more consistent compared to monthly 
ET values in the Patagonia Steppe. This might be the result of Agricultural irrigation providing a standard 
annual water use regime. Varying ET values during the study period in the Patagonia Steppe may be more 
closely related to water availability and variability of precipitation. In this region, there are a few vegetation 
species that are summer or winter ephemerals which are strictly dependent on seasonal rainfalls. For example, 
the peak in ET seen in February 2017 in the SSEBop time series might be the result of a summer ephemeral 
bloom.  
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7. Glossary 
CONICET – National Scientific and Technical Research Council  
Evapotranspiration – The transport of water from different land surfaces and vegetation to the atmosphere 
ET – Evapotranspiration  
GEE – Google Earth Engine 
GLDAS-2-Noah – Global Land Data Assimilation System-2-Noah 
Microphyllous xerophytic – A plant found in relatively dry habitats with one single, unbranched leaf vein 
MODIS – MODerate resolution Imaging Spectroradiometer 
MOD16 – MODerate resolution Imaging Spectroradiometer Global Evapotranspiration Project 
Reference evapotranspiration – Evapotranspiration from a standardized vegetated surface 
SSEBop – Operational Simplified Surface Energy Balance  
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9. Appendices 
Primary Datasets 

ET Model Model Type Date Source Satellite 

Operational Simplified 
Surface Energy Balance 
(SSEBop) 

Surface 
Energy 
Balance 

2015 to 2017 32TUhttps://cida.usgs.gov/gdp/U32T PRISM, 
TERRA 
MODIS, 
SRTM 

Global Land Data 
Assimilation System 
(GLDAS-2) Noah 

Land Surface 
Model 

2015 to 2017 32Thttps://giovanni.gsfc.nasa.gov
/giovanni/32T 

AQUA 
AMSR-E, 
TRMM TMI, 
DMSP, 
NOAA-18, 
GOES 

Penman-Montieth 
MOD 16 

Penman-
Montieth 

2015-2017 32Thttps://lpdaac.usgs.gov/node/
119132T 
 

TERRA 
MODIS 
 

 
Ancillary Datasets 

Dataset Date Use Acquired From Level DOI 

https://cida.usgs.gov/gdp/
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://lpdaac.usgs.gov/node/1191
https://lpdaac.usgs.gov/node/1191
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FLUXNET 2015-
2017 

CoP

2
P, Water 

Vapor, Energy 
Measurements 

https://daac.ornl
.gov/cgi-
bin/dataset_lister
.pl?p=9 

NA 10.3334/ORNLDAAC/1530 

RCEW Soil 
Moisture 

2015-
2018 

Soil Moisture USDA-ARS NA NA 

RCEW 
Precipitation 

2017 Precipitation USDA-ARS NA NA 

Reynolds Creek - 
Soils, Vegetation, 
and Geology 

1960-
1970 

Vegetation Critical Zone 
Observatory - 
Reynolds Creek 
Experimental 
Watershed 

NA http://criticalzone.org/reynold
s/data/dataset/3722/#policy  
 
 

Reynolds Creek - 
Instrumentation, 
Regions, and 
Boundaries 

2014 Boundaries and 
Instrument 
Locations 

Critical Zone 
Observatory - 
Reynolds Creek 
Experimental 
Watershed 

NA http://criticalzone.org/reynold
s/data/dataset/3934/#citation 

Joint Research 
Centre Global 
Surface Water 
Mapping Layers, 
v1.0 

2015-
2017 

Surface Water 
for Model 
Validation of 
ET Models 

Google Earth 
Engine 

NA https://global-surface-
water.appspot.com/download 

USGS NED 
n44w117 1/3 
arc-second 2013 
1 x 1 degree  
 

2013 Elevation    US Geological 
Survey 

NA https://catalog.data.gov/datase
t/national-elevation-dataset-
ned-1-3-arc-second-
downloadable-data-collection-
national-geospatial   

 
 

ET model resolutions 

ET Model Spatial Resolution Temporal Resolution 
Moderate Resolution Imaging 
Spectroradiometer (MODIS) 
Global Evapotranspiration 
Project (MOD16) 

 
500 m 

 
8 day  
 
 

Operational Simplified Surface 
Energy Balance (SSEBop) 

1 km 10 day 

Global Land Data Assimilation 
Noah evapotranspiration 
(GLDAS-2-Noah) 

~28 km 3 hour 
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