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1. Abstract 
The eastern Great Basin (EGB) covers approximately 411,000 kmP

2
P within the states of Arizona, Colorado, 

Idaho, Utah, and Wyoming. Since the 1950s, wildfires have increased in both frequency and size within the 
EGB and neighboring states. Partners at the Bureau of Land Management (BLM), the Idaho Department of 
Fish and Game, the National Weather Service, and the Great Basin Coordination Center (GBCC) are 
particularly concerned with Live Fuel Moisture (LFM). Living vegetation that fuels wildfires, referred to as 
live fuel, requires greater energy input to combust when wet and less energy input to combust when dry, 
making LFM a vital measurement for predicting wildfire risk and severity. To increase spatial coverage for the 
EGB from the 155 in situ observation sites, the NASA DEVELOP team modeled LFM using satellite data 
from Aqua and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-
orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The team incorporated 
remotely sensed data into machine learning modeling techniques, such as the Random Trees Classifier 
through ArcGIS Pro, to develop a predictive model of LFM. The remotely sensed data included vegetation 
indices, land surface temperature, evapotranspiration, and topographic variables. Model accuracy was 
evaluated by testing generated values against historical data obtained from partners at the BLM and the 
GBCC. The LFM model benefitted partners by improving the spatiotemporal resolution for wildfire 
forecasts. While model accuracy averaged at 8.2%, the LFM trend developed from model classification was 
useful for resource allocation and improved emergency response to wildfires within the EGB. 

Keywords 
remote sensing, wildfire, live fuel moisture, NDVI, evapotranspiration, soil moisture, MODIS, VIIRS 

2. Introduction 
 
2.1 Background Information 
Wildfires are a major source of disturbance for vegetation and are difficult to manage, regardless of the 
ignition source. They can impact water quality and watershed susceptibility to erosion and flooding for 
months, even years, after a burn period ends (United States Geological Survey [USGS], 2018). The frequency, 
size, and severity of wildfires have increased across the western United States since the 1950s (Davis & 
Weber, 2018). While wildfires are beneficial to ecosystem health relative to plant succession regulation and 
species composition, they also threaten property and human life (Leblon, Bourgeau-Chavez, & San-Miguel-
Ayanz, 2012). An analysis of the variables that contribute to wildfire risk and severity allows for improved 
response efforts and resource management. For land managers, live fuel moisture (LFM) is a key indicator for 
wildfire occurrence and behavior, as it relates to the rate of spread and potential for ignition (Danson & 
Bowyer, 2004).  
 
Current research on wildfire forecasting uses remote sensing data to examine variables such as land surface 
temperature (LST), evapotranspiration (ET), and vegetation indices to estimate LFM. Several studies have 
evaluated the accuracy and reliability of using these remotely sensed LFM inputs as a means to extrapolate 
wildfire potential (Danson & Bowyer, 2004; Dennison, Roberts, Peterson, & Rechel, 2005). As previous 
studies of LFM have not incorporated all variables used in this study, or have not covered the entire eastern 
Great Basin (EGB), a comprehensive analysis was necessary. This comprehensive analysis included a 
predictive model for wildfires that incorporated LST, ET, elevation, aspect, and a Normalized Difference 
Vegetation Index (NDVI) across the entire EGB.  
 
Prior to this study, land managers in the EGB exclusively relied on field samples for measuring LFM. In the 
EGB these field samples are taken from 155 field observation sites that cover 411,759 kmP

2
P of semi-arid 

ecosystems in Arizona, Colorado, Idaho (ID), Utah (UT), and Wyoming, with the majority of the study area 
covering ID and UT. Land managers with the Bureau of Land Management (BLM), the Idaho Department of 
Fish and Game (IDFG), the Great Basin Coordination Center (GBCC), and the National Oceanic and 
Atmospheric Administration (NOAA) use these field sites and LFM observations to estimate wildfire timing 
and severity and to make decisions on resource allocation and deployment. In order to provide an effective 
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LFM model for the EGB, the 2019 Fall NASA DEVELOP Great Basin Ecological Forecasting team 
conducted an analysis during peak wildfire season, April through September. Based on the availability of 
satellite data and in situ measurements, the team developed a model using data from the years 2016 and 
2017. Spatial resolution for LFM increased from 2,600 kmP

2
P to 250 mP

2
P through the development of a 

predictive LFM model. The team then conducted validation between remotely sensed data from NASA Earth 
observations (EO) and in situ LFM measurements prior to analyzing correlation strength to ensure model 
accuracy.  
 

 
Figure 1. The eastern Great Basin (EGB) study area in AZ, CO, ID, UT, & WY. The 155 fuel moisture 

observation sites serve as the locations for in situ LFM measurements. 
 
2.2 Project Partners & Objectives 
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The partners for this project were the Southeast Regional Office of the Idaho Department of Fish and Game 
(IDFG), the Upper Snake Field Office of the Bureau of Land Management (BLM), the Pocatello office of the 
NOAA National Weather Service (NWS), and the Great Basin Coordination Center (GBCC). The BLM and 
NWS are the primary end users and will use our predictive model to supplement in situ observations of LFM. 
This project benefited the end users and partners at the GBCC by streamlining the decision-making process 
and, if feasible, by providing a LFM predictive model that could be applied to the remaining Geographic Area 
Coordination Centers (GACC) across the US. The BLM and NWS provide wildfire safety warnings to 
communities based on estimated risk derived from the in situ LFM measurements. When wildfires occur, the 
BLM and NWS mobilize response resources, such as firefighters, helicopters, and volunteers, to protect the 
environment and human health. 
 
The primary objective of this study was to evaluate the feasibility of determining LFM from remotely sensed 
data such as ET, LST, NDVI, and topography. The team validated derived LFM values from Moderate 
Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) 
satellite imagery against in situ measurements of LFM in the EGB. This comparison evaluated the accuracy in 
estimating LFM in the semi-arid climate of the EGB. In order to determine the validity of deriving LFM 
values from remotely sensed data, we used a confusion matrix to evaluate the correlation strength of multiple 
data inputs to determine which inputs best matched the in situ datasets. Finally, we established a baseline for 
the Spring 2020 DEVELOP team to create a forecasting model of LFM into the 2020 fire season.  
 
3. Methodology 
 
3.1 Data Acquisition  
The team received in situ measurements of LFM from the BLM for the years 2016 and 2017 and used the 
BLM’s Fuel Moisture Sampling Guide as an outline for fuel moisture classification (Pollet & Brown, 2007). 
Based on project partner classification needs, we altered the six classes described in the BLM’s guide to 
produce the class divisions in Table 1. These LFM divisions classified the in situ observations for analysis. The 
team downloaded the United States Department of Agriculture (USDA) and the United States Geological 
Survey (USGS) Landfire existing vegetation cover (EVC) and existing vegetation types (EVT) for the study 
area. Additionally, we downloaded USGS National Elevation Dataset (NED) in order to create aspect, slope, 
elevation, and hillshade rasters at a 10 m spatial resolution.  
 
Table 1 
Fuel Classification Types used for LFM model (Pollet & Brown, 2007) 

Class Live Fuel Moisture Range 
(Percent) 

1 0-74 

2 75-99 

3 100-124 

4 125-149 

5 150-199 

6 200 & above 
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For NASA EO data, the team utilized NASA EARTHDATA and the Land Processes Data Archive Center 
(LP DAAC) Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). The project 
team downloaded Aqua and Terra MODIS ET as well as Suomi National Polar-orbiting Partnership (NPP) 
VIIRS LST and NDVI data as GeoTIFFs. Full descriptions of the data are outlined in Table 2.  
 
Table 2 
List of Sensors and Data Products utilized for this project 

Platform and Sensor Data Product Dates Acquisition Method 
Aqua MODIS MYD16A2 

Net Evapotranspiration 
8-Day L4 Global 500m 

SIN Grid V006 

April to September 2016 
& 2017 

EARTHDATA 

Terra MODIS MOD16A2 
Net Evapotranspiration 
8-Day L4 Global 500m 

SIN Grid V006 

April to September 2016 
& 2017 

EARTHDATA 

Suomi-NPP VIIRS VNP21A1D 
Land Surface 

Temperature and 
Emissivity Daily L3 

Global 1km SIN Grid 
Day V001 

April to September 2016 
& 2017 

LP DAAC 
AppEEARS 

Suomi-NPP VIIRS VNP13A1 
Vegetation Indices 16-

day L3 Global 500m SIN 
Grid V001 

April to September 2016 
& 2017 

LP DAAC 
AppEEARS 

 
3.2 Data Processing 
The team primarily conducted data processing using Esri ArcGIS Pro. We used USGS NED 10 meter Digital 
Elevation Models (DEMs) to develop aspect and elevation layers. In order to create training and testing 
points for the development of a predictive LFM model, the team organized the in situ data into the six LFM 
classes and separated it into 24 different time periods during the two year study period. Since the study period 
covers the six months of April through September during 2016 and 2017, the team divided each month into 
two periods in order to conduct an independent analysis on the first and second half of each month. 
Additionally, this was done to correspond with the field sampled data and to provide finer temporal 
resolution of the output data. Aqua and Terra MODIS ET, Suomi-NPP VIIRS LST and NDVI, and NED 
data were resampled to 250 m and reprojected to NAD 1983 Albers Equal Area Conic for layer consistency. 
Prior to model development, six-layer composite images were made for each of the 24 time periods within 
the study period. These composite images were layered with elevation, Aqua MODIS ET, VIIRS LST, VIIRS 
NDVI, Terra MODIS ET, and aspect from the given time period. The team clipped the composite images to 
the study area and masked out all nonburnable areas using the Landfire Fire Behavior Fuel Models (FBFM) 
40 land cover raster. Finally, the team split in situ data points for each time period into 60% training and 40% 
testing points using random point generation. These training and testing points were used to independently 
train and validate the Random Trees Classifier (RTC) tool in ArcGIS Pro.  
 
3.3 Data Analysis 
Using the RTC, the team created a predictive LFM model for conducting data analysis. For each of the 24 
time periods, the in situ training points trained the RTC to classify LFM using the corresponding composite 
image for the given time period. The model classified LFM of sagebrush for each 250 mP

2
P cell throughout the 

study area. In order to isolate sagebrush for classification, we utilized the Landfire EVT raster and masked 
out all other vegetation and land cover types. Using the RTC, the team made an LFM classification image for 
each time period using 60% of the in situ LFM observations. Then, a confusion matrix validated each model 
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output to demonstrate the correlation strength between satellite and in situ datasets. This validation used the in 
situ testing points, which accounted for 40% of the total in situ points for the given period. After the 
completion of the classification and validation, the team made three polygons: one incorporating the border 
between Idaho and Utah, one exclusively in Idaho, and one exclusively in Utah (Figure 2). These polygons 
covered the primary areas of interest for project partners. Next, the team calculated zonal statistics for each 
time period, and in each of the three polygons, in order to understand the annual trends of LFM during peak 
fire season. Finally, the mean and median outputs from the zonal statistics were exported to Microsoft Excel 
and used to develop trend lines of LFM. 

In situ sites 
Polygons 
Eastern Great Basin 

Live Fuel Moisture (LFM) 

LFM ≤ 75 % 
75% ≤ LFM < 100% 
100% ≤ LFM < 125% 
125% ≤ LFM < 150% 
150% ≤ LFM < 200% 

200% ≤ LFM 

Kilometers 
200 

N Live Fuel Moisture for July 2017 Term 2 

Figure 2. The EGB study area during the second term of July 2017 showing the three polygons used for 
classification trend analysis. The three polygons cover sagebrush dominated areas that are frequented by 

project partners but do not include any in situ sites. This allowed for unbiased statistics. 
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4. Results & Discussion 
 
4.1 Analysis of Results 
Our team developed 23 classification maps for April through September of 2016 and 2017. The second term 
of April in 2017 did not have a classification made due to a lack of in situ data. The average overall accuracy 
achieved in model classification was 8.2% with the highest overall accuracy achieved being 34.6% for the first 
term of July in 2017 (Figure 3). The lack of model accuracy was attributed to a lack of in situ data and gaps in 
VIIRS LST data, which were used to train and test the model. The mean number of training points was 28.3, 
with the mean number of testing, or validation points, being 18.9. While the accuracy for each classification 
was low (Table 3), the images were useful for the development of yearly LFM trend lines (Figure 4 a, b, & c).  
 

  
Figure 3. The EGB study area with LFM of sagebrush classified during the first term of July in 2017. This 

image depicts the variability in LFM percentages that exist during a peak wildfire month.  

In situ sites 
Polygons 
Eastern Great Basin 

Live Fuel Moisture (LFM) 

N 

Kilometers 
200 

LFM < 75 % 
75% ≤ LFM < 100% 
100% ≤ LFM < 125% 
125% ≤ LFM < 150% 
150% ≤ LFM < 200% 
200% ≤ LFM 

Live Fuel Moisture for July 2017 Term 1 
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Table 3 
LFM Model Accuracy 

Term Train Accuracy (%) Overall Accuracy (%) 
1-15 April 2016 100 0 
16-30 April 2016 100 0 
1-15 May 2016 82.6 0 
16-31 May 2016 100 0 
1-15 June 2016 95.0 0 
16-30 June 2016 100 4.2 
1-15 July 2016 100 13.3 
16-31 July 2016 100 25.0 

1-15 August 2016 97.7 13.3 
16-31 August 2016 96.4 5.2 

1-15 September 2016 97.1 9.1 
16-30 September 2016 100 9.1 

1-15 April 2017 100 0 
16-30 April 2017 NA NA 
1-15 May 2017 88.5 0 
16-31 May 2017 100 0 
1-15 June 2017 100 0 
16-30 June 2017 100 10.0 
1-15 July 2017 100 34.6 
16-31 July 2017 96.9 14.3 

1-15 August 2017 100 20.8 
16-31 August 2017 100 5.6 

1-15 September 2017 100 17.4 
16-31 September 2017 100 6.7 
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Figure 4 (a, b, & c). These images show the LFM classification average for each of the three polygons where 
zonal statistics were calculated. The second term of April 2017 is missing in all three graphs. This is due to 

insufficient data, and an inability to make a classification image. In all three polygons, the lowest mean LFM 
occurred between the months of July and September of 2016, with the highest mean LFM occurring in April 
of the same year. These trend lines follow predicted LFM percentages for these months, showing a decreased 

plant moisture during summer months, and higher LFM during late spring.  
 
4.2 Future Work  
Incorporation of meteorological data along with the LFM predictive model would be helpful for our end 
users to maintain a more comprehensive dataset for estimating potential wildfire risk and severity. Climate 
data depicting El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are linked to 
persistent droughts and could benefit land managers by providing multi-year cyclical predictions of wildfire 
risk and severity (Cole & Overpeck, 2002). Additionally, a forecasting model linked to ENSO and PDO 
patterns could expedite wildfire prediction and further advance response efforts for our partners and their 
organizations (Hessl, McKenzie, & Schellhaas, 2004). A forecasting model could also incorporate lightning 
strike data from the Geostationary Lightning Mapper (GLM) through the Geostationary Operational 
Environmental Satellites R-Series (GOES-R), where lightning could be a primary contributor to the 
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formation of wildfire events in the EGB (Dowdy & Mills, 2012). A combined analysis of these variables 
could provide greater insight toward generating a forecasting tool for our end users that integrates climate and 
meteorological data for predicting wildfire frequency in the EGB region (Collins, Omi, & Chapman, 
2006). After discussion with project partners, more in situ data will be added to the model by georeferencing 
sagebrush points to the 1 km surrounding partner measurement sites. This may increase model accuracy by 
increasing the number of training and testing points. Furthermore, using data collected from in situ 
observations, MODIS, VIIRS, and this team’s predictive model, the Great Basin Ecological Forecasting II 
project will develop a forecasting model that our end users will be able to use during the 2020 fire season.  
 
5. Conclusions 
Historically, partners used in situ LFM measurements as their main predictor of wildfire risk in the EGB. With 
the addition of the team’s LFM model classifications, partners received increased spatial awareness, 
approximately 10 times finer than in situ, regarding the behavior of LFM. Additionally, partners were able to 
use the developed trend lines to further understand the rate of change of LFM during peak fire season. The 
study demonstrated that the development of a LFM model using in situ measurements and NASA EO 
datasets is feasible, but increases in the accuracy would require more in situ observations and fewer gaps in 
VIIRS LST data. Additionally, our study was in agreement with past studies that indicated LST, ET, and 
NDVI as key variables influencing LFM (Burgan, Hartford, & Eidenshink, 1996; Chuvieco et al, 2004). While 
the model classifications featured low accuracy when compared to ground truth data, the statistics derived 
from these classifications were useful for profiling the behavior of LFM through mean and median trend 
analysis. Since dependent classification was successful, the development of more in situ points through 
georeferencing might increase model accuracy. As expected, LFM was much higher in the late spring than it 
was in summer months, and large variations between the two terms of each month occurred when there were 
intense weather events. In addition to the trends and classification developed by the team during this term, 
the partners will benefit from a forecasting model that will be developed in the spring.  

6. Acknowledgments 
The Great Basin Ecological Forecasting team would like to thank the project partners and advisors who 
offered their time and assistance to this project. 
 
Idaho Department of Fish and Game, Southeast Regional Office: 

• Scott Bergen, Senior Wildlife Research Biologist 
Bureau of Land Management, Upper Snake Field Office: 

• Ben Dyer, Fire Ecologist 
• Michelle Mavor, Fire Ecologist 

NOAA, National Weather Service: 
• Kurt Buffalo, Science and Operations Officer 
• Mike Hutson, Meteorologist 

Great Basin Coordination Center: 
• Nanette Hosenfeld, Predictive Services Meteorologist 

Special thank you to our Idaho node mentors: 
• Keith T. Weber, GIS Director at Idaho State University, GIS Training and Research Center 
• Mason Bull, NASA DEVELOP National Program ID Fellow 

 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. 
 
This material is based upon work supported by NASA through contract NNL16AA05C. 
 
7. Glossary 
AppEEARS – Application for Extracting and Exploring Analysis Ready Samples 
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BLM – Bureau of Land Management 
DEM – Digital Elevation Model 
EGB – eastern Great Basin 
ENSO - El Niño Southern Oscillation 
EO – Earth observations; Satellites and sensors that collect information about the Earth’s physical, chemical, 
and biological systems over space and time 
ET – Evapotranspiration 
EVC – Existing Vegetation Cover 
EVT– Existing Vegetation Type 
FBFM – Fire Behavior Fuel Models 
GACC – Geographic Area Coordination Center 
GBCC – Great Basin Coordination Center 
GIS TReC – Geographic Information Systems Training and Research Center 
GLM – Geostationary Lightning Mapper 
GOES-R – Geostationary Operational Environmental Satellites R-Series 
IDFG – Idaho Department of Fish and Game 
In situ – on-site, ground truth 
LFM – Live fuel moisture 
LST – Land surface temperature 
MODIS – MODerate Resolution Imaging Spectroradiometer 
NED – National Elevation Dataset 
NDVI – Normalized Difference Vegetation Index 
PDO – Pacific Decadal Oscillation 
RTC – Random Trees Classifier; Tool used in ArcGIS Pro to develop the predictive LFM model 
Suomi-NPP – Suomi National Polar-Orbiting Partnership  
VIIRS – Visible Infrared Imaging Radiometer Suite 
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9. Appendices 
Table A1 
Primary Datasets 

Dataset Date Use Acquired From Level DOI 

Aqua MODIS version 6 8-
day Global 500 m 
(MYD16A2) 

2016 
to 
2017 

ET NASA 
EARTHDATA 

Level 
4 

0B10.5067/MODIS/MYD16A2.006 

Suomi-NPP VIIRS version 1 
daily Global 1000 m 

2016 
to 
2017 

LST NASA LP DAAC 
AppEEARS 

Level 
2 

10.5067/VIIRS/VNP21A1D.001 

Suomi-NPP VIIRS version 1 
16-day Global 500 m pre-
processed NDVI 

2016 
to 
2017 

NDVI NASA LP DAAC 
AppEEARS 

Level 
3 

10.5067/VIIRS/VNP13A1.001 

Terra MODIS version 6 8-
day Global 500m 
(MOD16A2) 

2016 
to 
2017 

ET NASA 
EARTHDATA 

Level 
4 1B10.5067/MODIS/MOD16A2.006 

 
Table A2 
Ancillary Datasets 

Dataset Date Use Acquired 
From 

Level DOI 

GBCC LFM in 
situ 
measurements 

April 2, 2016 
to September 
30, 2016 ; 
April 1, 2017 
to September 
20, 2017 

Validation for 
model outputs 

GBCC & 
BLM 

NA NA 

Landfire Land 
Cover Datasets 

2018 Defining EVT 
and sagebrush 
classification 

USDA & 
USGS 

NA NA 

Landfire 40 
FBFM 

2005 Fuel type 
classification 
and masking 
out of 
nonburnable 
areas 

BLM NA NA 

NED 2012 Calibration of 
model 

USGS NA NA 
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