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Background 
 60% of Idaho is publicly managed land
 Receives an average of 12 inches of precipitation per year
 Landcover ranges from semi-arid sagebrush Steppe at low 

elevations transitions to mixed forest at higher elevations

Image Credit: Ian Lauer
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 wildlife range management
 grazing allotments
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Community Concerns
The water balance is critical to managing 

semi-arid environments:
 fire susceptibility
 native plant management
 wildlife range management
 grazing allotments

Our partners currently use field-based 
methods to collect ET data.
 costly and time intensive
 limited distribution for regional scales

Image Credit: Leah Kucera
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precipitation. 
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The Water Cycle

Image Credit: Jenny Parks Illustration/SSCZO

There are various inputs to the 
water cycle such as 
precipitation.

The previous term focused on 
water storage as soil moisture.

This term focused on 
evapotranspiration (ET).
 Transfer of water vapor from 

surfaces to the atmosphere
 Evaporation + Transpiration
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Objectives 
ASSESS
 the potential of multiple models to map 

ET across semi-arid environments
VALIDATE
models by comparing them to Eddy 

Covariance Flux Tower Measurements
COMPARE
ET data to soil moisture, vegetation 

health, & precipitation to produce a 
holistic view of water availability

SHARE
A model or methodology that can

be used by project partners in 
their respective disciplines

ET Model



Methodology
DATA INPUTS ANALYZE COMPARE OUTPUT

GEE ET Models: 
EEFlux

MOD16 
SSEBop Google Earth Engine:

Combine GEE and in situ data; 
extract values at RCEW sites ET Maps & 

Correlation 
PlotsArcGIS Pro:

Clip to study area; extract 
values at RCEW Points

RCEW ET & soil 
moisture, 
MSAVI2 

Other Models:
NLDAS-2-Noah

Compare ET 
maps to 

elevation, soil 
moisture, etc.



NASA Satellites Used

Terra 
MODIS & ASTER

Landsat 8
OLI & TIRS

Aqua MODIS Landsat 8
OLI & TIRS



Study Area

Validation Sites: RCEW
Reynolds Creek 

Experimental Watershed
 founded in 1959 as an 

outdoor laboratory for study 
of critical zone processes E.C. Flux

Towers

Study Area 
Outline

0         5        10 20 km 

IDAHO



RCEW Sites &
Vegetation Mtn Sage

Mtn Sage/ btrbr
Low Sage
Conifer
Quaking Aspen
Cult. / greasewood
Other veg.

WY Sagebrush

Low Sagebrush

Mtn Sagebrush 1

Mtn Sagebrush 2

Representative sagebrush 
steppe, high desert

4 Eddy Covariance Flux Towers
3 vegetation types
Elevation gradient
WY Sage  Mtn. Sage 2
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Results: SSEBop
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Results: EEFlux
EEFlux
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Results: EEFlux
ET
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Results: MOD16
MOD16
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Results: MOD16
ET
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MOD16 vs. RCEW, 2016
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Results: NLDAS-2-Noah
NLDAS-2-Noah
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Results: NLDAS-2-Noah
ET
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Results: Model Comparison
MODEL PROS CONS
SSEBop  Easy to 

access/download 
data

 Underestimates ET
 Highly variable correlations 

depending on vegetation/elevation

EEFlux
(METRIC)

 High spatial resolution  Difficult to access & download data
 Cloud cover limits usability
 Landsat 7 images may be unusable

MOD16  Fairly high spatial 
resolution

 Overestimates ET across the board

NLDAS  Best correlations
 High temporal 

resolution

 Low spatial resolution
 Correlation may depend on 

availability of meteorological data



Results: Elevation
EEFlux (METRIC)
 EEFlux generally increases linearly with 

elevation from 1200-2000m 
 Low and high elevations show models 

sensitivity to plant type
 Spatial resolution (30m) leads to greater 

sensitivity in elevation bins

SSEBop
 Linear increase in ET with elevation
 Low sensitivity to different vegetation types at 

extremes of elevation, possibly due to spatial 
resolution (1000m)

NLDAS-2 Noah
 Not shown, spatial resolution is ~12km, 

containing a large range of elevations per 
pixel, too coarse for analysis
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Results: Vegetation Type

Distribution of ET
 Sagebrush types account for 94% of 

vegetation
 Conifer and Aspen account for <4%

ET by Vegetation Type
 EEFlux, SSEBop, and MOD16 all showed 

similar trends in ET by vegetation type
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Results: Vegetation Health
R² = 0.8457
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ET vs Vegetation Health
ET increased linearly with vegetation 

health in all 4 models and in situ data
Relationship is similar across sites, 

which vary in vegetation type, but 
are all dominated by varying species 
of sagebrush
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Conclusions
 NLDAS-2 Noah was the best estimator of in situ ET measurements and 

had the best temporal resolution at 1 hr, but had the worst spatial 
resolution. 

 Choose ET model based on the question you want to answer–
Different spatial and temporal scales mean they would apply to 
different problems

 Sharpening high temporal resolution (NLDAS) data with high spatial 
resolution models (SSEBop, MOD16, or EEFlux) has the potential to be 
an ideal model

Image Credit: Ian Lauer



Future Work
Image Credit: Reynolds Creek Experimental Watershed

Compare this term’s ET model results to the Patagonia steppe in 
Argentina and apply a new model developed there to Idaho

Evaluate the ability of Ecosystem Spaceborne Thermal 
Radiometer Experiment on Space Station (ECOSTRESS) to 
measure ET in the semiarid sagebrush steppe



This material is based upon work supported by NASA through contract NNL16AA05C. Any mention of a commercial product, service, or activity in this material does not constitute NASA endorsement. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration and partner organizations. 
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