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I. Abstract 
Wildfires play an important role in ecosystem health, with many native plant species 

dependent on fire to complete their life cycle. Wildfires also burn dead vegetation, 

which recycles nutrients back into the soil. However, longer dry periods and the 

prominence of invasive species (e.g. Bromus tectorum) have created favorable 

conditions in the western United States for larger and more frequent wildfires, which can 

disrupt ecosystems, human localities, and the critical habitats of endangered wildlife. To 

prepare for the fire season in Idaho, the Bureau of Land Management (BLM) and the 

Idaho Department of Lands (IDL) use vegetation moisture measurements from the 

National Fuel Moisture Database to identify and allocate resources to regions with drier 

vegetation during the year. In order to supplement their current data products, we 

created a vegetation map to identify vegetation species with high fire risk and highlight 

areas of high fuel concentration. The vegetation map was created using a decision 

tree model on imagery from the Landsat 8 Operational Land Imager throughout the 

year in southeastern Idaho. The results and data gathered from this study will support 

IDL and BLM in allocating resources early in the fire season and planning fuel load 

reduction activities following the fire season. 
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II. Introduction 
Wildfires are natural ecological processes that support long-term environmental 

sustainability and diversity but are also considered major disturbance mechanisms to 

human society. Key to understanding wildfire regimes is knowing the distribution of 

vegetation and how fire behaves in the presence of various types of flora. Throughout 

the rangelands of Idaho, wildfire regimes have grown in frequency due to the 

introduction of foreign brome grasses, specifically, Bromus tectorum, hereby referred to 

as ‘cheatgrass’ (Bradley et al., 2009; Mealor et al., 2013). This project is classified in the 

Disasters application area due to the effect an increase in fire severity and frequency 

has on the landscape and society (Schneider et al., 2008). 

 

Cheatgrass outcompetes vegetation in the native sagebrush steppe due to its winter 

and early spring germination cycles and fast-growing shoot and root system. Due to its 

early phenology, cheatgrass reaches mature and senescent stages much faster than 

native species and is a fine fuel source for wildfires (Mealor et al., 2013). Cheatgrass is 

also hazardous because it belongs in the <1-hour fuel moisture class, making it more 

responsive to day to day climate conditions. The moisture content in vegetation has a 

direct impact on fire susceptibility and is directly related to environmental conditions 

and the size of the plant. Larger flora, those greater than 7.6 cm in diameter, are in the 

1000-hour fuel class, meaning that it takes 1000-hours or more in order to equilibrate 

with the moisture content in the air, and takes even longer for living plants 

(Schoennagel et al., 2004). Larger vegetation species such as trees and some shrubs 

are not as susceptible to drying out and contributing to fire susceptibility unlike smaller 

plants in the 1-, 10- and 100-hour fuel classes.   
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Figure 1 - Study area in SE Idaho located at WRS2 

Path 30 row 30 

The objective of this study was to create a vegetation classification map that visualized 

the spatial distribution of cheatgrass and other vegetation classes in southeast Idaho.  

Although vegetation maps exist for the Great Basin, none are as comprehensive as we 

proposed and most classify land coverage based on functional land use rather than 

existing vegetation. Bradley et al. (2008) examined all vegetation species in the Great 

Basin region of northern Arizona using Normalized Difference Vegetation Index (NDVI); 

however, the spatial resolution was at 1 km with less than 60% overall accuracy due to 

pixel mixing. Many researchers have analyzed the distribution of cheatgrass on a 30-250 

m scale (Meinke, 2009; Peterson, 2003; PNWRC, 2004; Singh & Glenn, 2009), but the 

location of all vegetation is needed to understand the fire ecology and restoration 

processes in the region. Our research seeks to create a methodology that will allow the 

vegetation map to be updated each year, since fires can change the landscape 

seasonally.  

 

Our study area was comprised of the expansive 

savannah ecosystems and agricultural 

operations in southeast Idaho. As a preliminary 

examination, we used imagery gathered during 

2013 and 2014 from Landsat 8 WRS-2 Path 39, 

Row 30. The spatial extent of the Landsat scene 

covers 31,450 km2 centered around Blackfoot, 

ID. A majority of this region is classified as semi-

arid desert scrub, grassland, and agriculture as 

identified by the 2011 National Land Cover 

Dataset (NLCD) - most of which is located in The 

Big Desert (Figure 1). Annual precipitation totals 

in southern Idaho ranges from 20 to 30 cm, of 

which 25-50% is snowfall. Vegetation in the 

savannah ecosystems is a mixture of native 

species such as sagebrush, rabbit brush, crested 

winter wheat, and the non-native cheatgrass 

(Chen et al., 2011). Nearly 100% of the wildfires in this region occur between May and 

October, peaking in July and August, which are the warmest months in southern Idaho 

(Westerling et al., 2003).  

 

Results and methodologies obtained from this study will support the Idaho Department 

of Lands (IDL) and the Bureau of Land Management (BLM) in making resource 

allocation decisions early in the fire season. The vegetation map will help identify areas 

with high proportions of fine, easily ignitable fuels that are ideal locations for fuel load 

reduction activities such as prescribed burns. Not only will vegetation maps aid in fire 

susceptibility models, decision making, and monitoring invasive species, vegetation 

distribution also greatly affects faunal distribution and may have important applications 

to preserving delicate ecosystems (Yensen et al., 2002). 
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III. Methodology 
Data Acquisition 

Landsat 8 and WorldView2 satellite imagery were collected through the United States 

Geological Survey (USGS) using the Earth Explorer web application. Three 

radiometrically corrected level-1T images were collected from the Operational Land 

Imager (OLI) instrument on Landsat 8. The images selected for analysis were identified 

as the earliest dates for 2013 and 2014 that had less than 20% cloud cover and after 

temperatures were high enough to allow for cheatgrass germination. Early growing 

season imagery is best for identifying cheatgrass given the earlier phenology of 

cheatgrass respective to native vegetation (Singh & Glenn, 2009). For this study, 

imagery was obtained from Landsat 8 OLI for June 16, 2013, April 16th, 2014 and May 

2nd, 2014. The 2013 imagery was obtained later in the season due to cloud cover in the 

region earlier in the year. The 2013 imagery was used to compare to the 2014 imagery 

and identify areas of agreement. Atmospheric effects were corrected in the Landsat 

imagery using the IDRISI ATMOSC module prior to data processing. WorldView2 imagery 

was collected between July 19 and October 14, 2014 for use in validation. This Level 1 

data product has 0.5 m resolution; however, the image area is greatly reduced to an 

average of 3,500 km2 per image. 

 

Classification Tree Analysis 

We implemented Classification Tree Analysis (CTA) to categorize the study area into 

different vegetation classes. This tool is useful since it does not rely on normally 

distributed data, uses a variety of different inputs including raw imagery, and generally 

provides better classification accuracy than other methods (Lawrence et al., 2004). We 

did not use the raw Landsat 8 imagery as the inputs, instead the modified soil adjusted 

vegetation index (mSAVI) and Kauth-Thomas tasseled cap transformation (TCT) (Kauth 

& Thomas, 1976) were calculated. The mSAVI (specifically, mSAVI2) was originally 

proposed by Qi et al. (1994) to account for the reflectance of soil as a relationship to 

the percent of vegetation cover, which is beneficial for the semi-arid study region 

(Singh & Glenn, 2009). The equation uses the near-infrared and red bands in the 

Landsat 8 imagery: 
 

  Eqn. 1 

 

The TCT determines the brightness, greenness, and wetness using the Landsat 8 bands in 

each image. The brightness is the total brightness of each pixel summed through each 

band. The greenness calculates a vegetation index measuring the photosynthetically 

active radiation and the wetness index indicates soil moisture. Although TCT is usually 

displayed as one composite, each of the indices are independent of each other and 

were used separately as inputs in the CTA. 

 

Classification sites used for training and validation were created using in situ cheatgrass 

data obtained from the GIS Training and Research Center (GIS TReC) in Pocatello, ID, 

USGS BISON - Biodiversity Information Serving Our Nation (http://bison.usgs.ornl.gov/), 

and University of Georgia: Center for Invasive Species & Ecosystem Health 

(http://www.eddmaps.org/). Cheatgrass observations from the GIS TReC were 
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Table 2 – Band Usage in Classification Tree Analysis 

Table 1 – Classification Sites Used for Training and Validation 

collected during June 2014, BISON observations were from June 2013, and observations 

from UGA were collected during the  

summer months in 2004, 2005, 

and 2007. Other than cheatgrass, 

the vegetation  

classification points were created 

from visual analysis of WorldView 

2 and 2013 National Agricultural 

Imagery Program (NAIP) images 

and land cover classification 

products including the 2011 NLCD 

and the 2001 Northwest Gap 

Analysis. The other vegetation classes created were bare ground, sagebrush, 

juniper/montane forest, and riparian (Table 1). An image mask was created from the 

2010 Idaho Cropland Data Layer (USDA) and applied to CTA results to remove areas 

defined as urban, agricultural, basaltic lava formations, and water since these classes 

are not relevant to the vegetation distribution analysis that was conducted in this study. 

Five hundred points from the classification sites were randomly subset for each class 

and used as training sites for CTA. The remaining classification points were used to 

validate the CTA results. The same set of training and validation sites were used for both 

the 2013 and 2014 CTA. All imagery for 2013 and 2014 were input into the classification 

tree analysis in IDRISI. The study area had to be trimmed to best use this tool to an area 

of 14,222km2 (see Figure 2 for extent). 

 

Validation 

The total number of validation points was 177,289 and varied between classes and 

were dependent on the original number of classification sites for each class (Table 1). 

The validation points for the riparian, bare ground, juniper/montane forest, cheatgrass, 

sagebrush/shrub classes were used to compare the vegetation output from the 2013 

and 2014 CTA. The 2013 classification output was compared to the results of the 2014 

vegetation map to further evaluate the accuracy of this methodology and the outputs. 

It is assumed that vegetation distribution remained relatively unchanged throughout 

the study region throughout the 2013 and 2014 growing seasons. 

IV. Results & Discussion 
The kappa coefficient for the 2014 

vegetation validation was 0.38, 

representing a fair agreement between 

the model output and the validation sites 

(Figure 2A; Appendix 1; Landis & Koch, 

1977). Both the 2013 and 2014 CTA results 

used a majority of the input bands, but 

the 2014 CTA included more branches to 

get to the final classification, likely as a 

Class # Training # Validation Total 

Riparian 485 21830 22315 

Bare ground 499 6951 7450 

Sagebrush/shrub 412 147030 147442 

Cheatgrass 448 352 800 

Juniper/Montane forest 76 1126 1202 

Total 1920 177289 179209 

2013 2014 

Date Image Used Date Image Used 

Jun 16 mSAVI 10 Apr 16 mSAVI 13 

Jun 16 Bright 9 Apr 16 Bright 3 

Jun 16 Green 5 Apr 16 Green 7 

Jun 16 Wet 1 Apr 16 Wet 3 

   
May 02 mSAVI 8 

   
May 02 Bright 3 

   
May 02 Green 4 

   
May 02 Wet 0 
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result of more input bands (Appendix 2). The most 

useful layers for the 2014 CTA analysis were the 

mSAVI from both dates and the greenness band 

from April 16th (Table 1). However, the May 2nd 

wetness band was not used at all in the analysis. 

The 2014 vegetation map exhibited 68% overall 

accuracy between the five vegetation classes 

(Appendix 1B). In comparison, Bradley et al. 

(2008) used a manually created CTA in this region 

with only 58% accuracy and the Northwest Gap 

Analysis (NGA) accuracy with a 70% (Grossmann 

et al., 2008). Although the NGA is slightly more 

accurate, this data product was created by 

many thousands of individuals conducting in situ 

data to create accurate training and validation 

points. Although this product is comprehensive, it 

is not updated regularly to reflect the changing 

ecosystems in southern Idaho. 

 

The cheatgrass vegetation class was slightly more 

accurate at 73%. The increased accuracy could 

be due to better classification sites due to many 

of them being based on in situ data and the early 

mSAVI imagery was used specifically to better 

delineate cheatgrass. The high accuracy of the 

cheatgrass locations is the most beneficial to the 

BLM and IDL since cheatgrass is the most highly 

monitored. The kappa coefficient for the 2013 

vegetation validation was 0.30, similar to the 2014 

validation, and represents a fair agreement 

between the model output and the validation 

sites (Figure 2B; Appendix 3; Landis & Koch, 1977). 

In the 2013 CTA, the most used imagery for splits 

were mSAVI, used 10 times, and brightness, used 

9 times (Table 1). The total accuracy for the 

classes was 55% while cheatgrass had a 64% 

accuracy. The kappa coefficient, overall 

accuracy, and cheatgrass accuracy is lower 

than 2014 which is likely due to using later-season 

imagery for the input images.  

 

Comparison between 2013 and 2014 

The purpose of running the CTA on the 2013 

imagery was to see how much agreement 

existed between the two analyses between 

years. Although the 2013 vegetation map was less 

accurate than 2014, the pixels in which both maps 

agree provides insight and further validation on the 

C 

B 

A 

A: CTA 2013 Results 

B: CTA 2014 Results 

C: Pixels that are the same 

for both 2013 and 2014 

outputs  
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Table 3 – Comparison between 2014 and 2013 Vegetation 

Output 

*units in km2 

identity of the vegetation class the pixel belongs (Figure 2B). There was 34.7%  

agreement across all vegetation classes 

between 2013 and 2014 (Table 3). 

Specifically, 27.8% of the cheatgrass 

pixels in 2014 were located in the same 

location in 2013. These values indicate 

that there was a lot of change in 

vegetation between 2013 and 2014, 

which likely did not occur. Both of the 

vegetation outputs have errors 

addressed below, which explains the 

large disparity between the two maps 

and the low similarities. Nonetheless, the 

existing similarities provide strength to the 

accurate classification of those pixels.  

 

Errors and Uncertainty 

One of the major problems encountered was misclassification. Some of the inaccuracy 

in vegetation classification is due to pixel mixing. Some of the Landsat 8 pixels contain 

multiple vegetation species, which prevents the decision tree model from accurately 

categorizing a pixel, a common problem seen in previous research (Atkinson et al., 

1997; Bradley et al., 2008). The model usually categorizes a pixel based on the 

vegetation species most present, but depending on the spectral signature, the pixel 

may be assigned to a category not representative of any vegetation species in the 

area; however, this occurrence is rare. Misclassification of pixels is also due to 

inaccurate training and validation sites, which CTA is particularly sensitive and leads to 

erroneous results (Friedman, 2001). In the results, the juniper/montane forest in the 

southeast corner of the study area was mistakenly labeled as either riparian or 

cheatgrass. This misclassification is likely due to the absence of a conifer forested class 

and a smaller number of training sites for the juniper/montane forest class.  

 

Future Work 

Work in the subsequent term will resolve errors with the vegetation map by 

incorporating additional in situ observations scheduled for collection in May 2015 by GIS 

TReC staff and sagebrush mapping products currently in development by the USGS 

(expected delivery July 2015). These additions, combined with previously utilized 

methods, will result in the creation of more accurate classification sites used for future 

decision tree models. The Normalized Differenced Bare Soil Index (NDBSI), first proposed 

by Baraldi et al. (2006), will also be assessed for suitability into future decision tree 

classification models and included if it is observed to assist with the differentiations 

between soil and other relevant classes. We will also explore using the stochastic 

gradient boosting technique which works similarly to CTA but places less emphasis on 

training sites and more emphasis on the relatedness between pixels (Lawrence et al., 

2004).  

 
2014 2013 Same % of 2014 

Masked 6917 6917 6917 100 

Riparian 2715 2972 725 26.7 

Bare ground 2306 2654 802 34.8 

Sagebrush 3909 2961 1866 47.7 

Cheatgrass 3981 3169 1108 27.8 

Juniper 1311 2466 437 33.3 

Total 14222 14222 4939 
 

% Agreement 
  

34.7 
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V. Conclusions 
Using mSAVI and TCT derived from Landsat 8 OLI, this study focused on identifying 

vegetation distribution throughout southeast Idaho with particular interest in identifying 

cheatgrass. This work was done in order to create a vegetation map representing the 

spatial distribution of cheatgrass and other vegetation types and land coverage in the 

region. Extreme weather events such as El Niño, may encourage cheatgrass expansion 

across the study area, increasing the susceptibility to wildfire occurrences. Even though 

phenological stages and plant community structures can influence the accuracy of 

data derived from remotely sensed imagery, we are confident this product is the most 

recent and up-to-date tool for use by our end users, the BLM and IDL. Not only can this 

product be used for identifying fire susceptibility, it can be used to identify changing 

habitat for endangered and critical species, monitoring responses to climate change 

and as a guide for restoring ecosystems. Continued use of remote sensing technologies 

will enable our end users, and others, to promote prevention by characterizing pre-fire 

conditions and risks. The methods applied in this study are easily applied on an annual 

basis to update the vegetation map with the most recently available satellite imagery, 

which is critical in analyzing how the landscape responds to various disturbances and 

natural biological processes including wildfires. 
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VIII. Appendices 
 

  Riparian Bare ground Sagebrush Cheatgrass Juniper Total ErrorC 

Riparian 17907 356 17976 27 198 36464 0.5089 

Bare ground 153 6183 3558 14 24 9932 0.3775 

Sagebrush 888 194 93890 45 143 95160 0.0133 

Cheatgrass 1717 210 26086 256 78 28347 0.991 

Juniper 1164 7 5520 9 682 7382 0.9076 

Total 21829 6950 147030 351 1125 177285 
 

ErrorO 0.1797 0.1104 0.3614 0.2707 0.3938   0.3292 

90% Confidence Interval = +/- 0.0018 (0.3274 - 0.3311) 

95% Confidence Interval = +/- 0.0022 (0.3270 - 0.3314) 

99% Confidence Interval = +/- 0.0029 (0.3263 - 0.3321) 

Overall Kappa = 0.375 
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Appendix 2 – Classification Tree Analysis in 2014 (A) and 2013 (B) 

 

 

A 
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Appendix 3 – Error Matrix for 2014 Classification Tree Analysis 

 
 

  Riparian 
Bare 

ground 
Sagebrush Cheatgrass Juniper Total ErrorC 

Riparian 18970 1046 72 1 103 20192 0.0605 

Bare ground 1990 4672 4023 11 163 10859 0.5698 

Sagebrush 11 173 73552 69 19 73824 0.0037 

Cheatgrass 269 280 42480 226 209 43464 0.9948 

Juniper 589 779 26903 44 631 28946 0.9782 

Total 21829 6950 147030 351 1125 177285 
 

ErrorO 0.131 0.3278 0.4997 0.3561 0.4391   0.4469 

         90% Confidence Interval  =  +/-  0.0019    (0.4450 - 0.4489) 

         95% Confidence Interval  =  +/-  0.0023    (0.4446 - 0.4492) 

         99% Confidence Interval  =  +/-  0.0030    (0.4439 - 0.4500) 

Overall Kappa =         0.2981 

B 


