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1. ABSTRACT 

This study compares two probabilistic decision forest land cover classification models focused on 
identifying aspen (Populus tremuloides) for the year 2023 across southeast Idaho. The Landsat 8-derived 
decision forest model (LDDFM) was based on 30-meter spatial resolution Landsat 8 imagery and the 
Sentinel-2-derived decision forest model (SDDFM) was based on 10-meter spatial resolution Sentinel-2 
imagery. Comparisons were made between overall model accuracy, predicted aspen acreage, and a 
HUC08 watershed-level comparison of mean probability values at or above a 0.25 threshold. Based upon 
a standard error matrix, the LDDFM had higher accuracy (90% producer’s accuracy) compared SDDFM 
(77% producer’s accuracy). Kappa Index of Agreement (KIA) indicated very similar results, with 
LDDFM having a KIA of 0.92 and SDDFM having a KIA of 0.86. The percent difference between 
predicted acreage for the LDDFM and SDDFM models was 51% with the SDDFM also predicting 
316,000 more acres of aspen within the study area compared to the LDDFM. Watershed basin analysis 
showed SDDFM predicted higher acreages of aspen in 20 of the 21 watersheds within the study area 
compared to the LDDFM. The findings of this study suggest the 30-m spatial resolution LDDFM 
performed well and is appropriate for studying landscape-level aspen populations, though Landsat may be 
unable to classify smaller stands. These results also suggest 10-m Sentinel-2 imagery does not provide 
fine enough spatial resolution to predict smaller stands either without gross overprediction. Future 
investigations into even finer spatial resolution commercial imagery to inventory aspen stands in areas of 
particular management and conservation concern are recommended. 

 
2. INTRODUCTION 

Aspen (Populus tremuloides) are the most widespread broadleaf tree in North America and are 
frequently the only broadleaf species in an otherwise conifer-dominated boreal landscape (Kitchen et al. 
2019). Often referred to as a keystone species (Wilson 1992), aspen serve a disproportionately important 
role in the biodiversity and functioning of the ecosystems in which they appear (Kay 1997). They also 
provide a number of critical ecosystem services including nutrient cycling, carbon sequestration, and both 
food and shelter for many species of plants, insects, microbes, and animals (Kouki and Martikaenen, 
2004). Aspen exists across diverse ecological settings and as a result, exhibit a diverse set of ecological 
roles, making generalizations challenging and context specific studies of aspen necessary for well-
informed management (Romme et al. 2001).  

While aspen has been reported to be declining across the western United States (Singer et al. 
2019), few studies focus specifically on aspen populations in eastern Idaho. This study serves as one 
component of a larger study aimed at using remotely-sensed imagery to classify and map changes in 
aspen population and distribution across southeast Idaho (Figure 1). The focus of this study was to 
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compare two probabilistic decision forest models, one based on 30-m spatial resolution Landsat 8 
imagery and the other based on 10-m spatial resolution Sentinel-2 imagery. The points of comparison 
were overall aspen model accuracy, predicted aspen acreage, and mean probability at each watershed 
basin. 

 
Figure 1. Study area in southeast Idaho with 21 watershed boundaries (HUC08) used for analysis.  

 This study sought to determine whether 10-m Sentinel-2 imagery would improve the accuracy 
and predictive power of a probabilistic decision forest model used to predict aspen in a section of 
southeast Idaho when compared to the same model based on 30-m Landsat imagery. Land managers at 
the Bureau of Land Management indicated that previous iterations of the Landsat-derived model were 
simultaneously overpredicting aspen in some watersheds within the study area while missing known 
stands in others. Because Landsat’s 30-m spatial resolution is fairly coarse and some aspen stands may be 
too small, too sparse, or not spectrally homogenous enough to be detected at this resolution, we 
hypothesized that finer spatial resolution 10-m Sentinel-2 imagery might reduce overprediction while 
being able to detect smaller stands than the Landsat-derived model would allow. 
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3. METHODS 
 To test the hypothesis that finer spatial resolution 10-m Sentinel-2 imagery might perform better, 
two probabilistic decision forest models were built. The first used 30-m spatial resolution Landsat 8 data 
from the month of August, 2023 (LDDFM) and the second used 10-m spatial resolution Sentinel-2 data 
from the month of July, 2023 (SDDFM). Though there are more spectral bands available from Landsat 8 
than for Sentinel-2, the blue, green, red, and near-infrared bands, plus the first component of a principal 
component analysis from each dataset were used to enable a more direct comparison. Both models were 
given the same set of landcover training points and ancillary datasets including topographic layers and a 
distance to streams layer.  

Three primary aspects of model performance were investigated. First, validation against the same 
set of reserved known landcover points was performed on each model using a standard error matrix to 
compare overall model accuracy by looking at the Kappa Index of Agreement (KIA) for each model as 
well as agreement for the aspen class specifically. Second, a statistically-derived cutoff threshold (SDCT) 
was determined for each model. This was accomplished by extracting Decision Forest output probability 
values for each aspen validation point using the Extract Multivalues to Points geoprocessing tool in 
ArcGIS Pro.  The mean probability value was then determined for each model (i.e., LDDFM and 
SDDFM) and is henceforth referred to as the SDCT.   Pixels with values at or above the SDCT were 
assumed to be dense, homogeneous aspen stands.  The area of aspen (in acres) was then calculated for 
each model across the study area. Third, zonal statistics were run in ArcGIS Pro using HUC08 watershed 
basins to test how model performance varied spatially and between the two models. To do this, a second 
probability threshold of 0.25 was used to remove pixels that likely were not aspen for the purpose of this 
analysis. Once this was completed, the mean probability value of aspen pixels within each watershed 
basin was determined, with higher mean values indicating greater model confidence for the presence of 
aspen. 
 
3.1 Data Acquisition  
 Landsat 8 Optical Land Imager (OLI) 30-meter spatial resolution imagery was used for this study. 
Each scene contained less than ten-percent cloud cover and was acquired via the United States Geological 
Survey (USGS) Earth Explorer data portal. Images were selected from the Landsat Collection 2, Level-1 
dataset. Images with the least amount of visible cloud cover, snow/ice, smoke contamination were 
selected. Four overlapping scenes were necessary to cover the entire study area. 
 In addition, Sentinel-2 Multispectral Imager (MSI) 10-meter spatial resolution imagery was also 
used for this study.  Similarly, each scene contained less than ten percent cloud cover and was acquired 
via the European Space Agency (ESA) Copernicus Browser data portal using the Sentinel-2 MSI L2A 
collection. Images from July, August, and September were investigated, but images collected on 4 July 
2023 were selected as these had the least amount of cloud, snow/ice, and smoke contamination overall. 
Four overlapping images were required to cover the entire study area.  

For a more direct sensor-to-sensor comparison, only the blue, green, red, and near-infrared bands 
were used from both Landsat 8 OLI and Sentinel-2 MSI. The wavelengths and bandwidths for each 
instrument are quite similar in the blue, green, and red, and vary only slightly in the near-infrared (NIR) 
band (Table 1).  
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Table 1. Comparison of bands used from Landsat 8 OLI and Sentinel-2 MSI. 
 Landsat 8 (L8) Sentinel-2 (S2) 

  Band ID Start 
wavelength 
(μm) 

End 
wavelength 
(μm) 

Band ID Start 
wavelength 
(μm) 

End 
wavelength 
(μm) 

Blue 2 0.45 0.51 2 0.46 0.53 
Green 3 0.53 0.59 3 0.54 0.58 
Red 4 0.64 0.67 4 0.65 0.68 
NIR 5 0.85 0.88 8 0.78 0.89 

 
Topographic layers were acquired from the NASA RECOVER database. These layers include 

aspect, elevation, landforms, maximum curvature, slope, and topographic shape. A distance to streams 
layer was also created using the Distance module in Idrisi TerrSet and the USGS NHD Rivers, streams, 
and flowlines dataset to calculate and assign a Euclidean distance to each pixel from the nearest perennial 
and intermittent stream. For use with Landsat imagery, these layers were resampled from 10-meter spatial 
resolution to 30-meter spatial resolution using the resample geoprocessing tool in ArcGIS Pro with 
bilinear interpolation, then clipped to the extent of the study area to feed into the decision forest model. 
 
3.2 Data Preparation 
 3.2.1 Atmospheric Correction 

Landsat 8 OLI images were atmospherically corrected in Idrisi TerrSet’s Landsat archive import 
module where multispectral bands were converted to reflectance using the Cosine(t) model of reflectance 
correction (Chavez, P.S. 1996). Sentinel-2 images were already atmospherically corrected at the point of 
download, and were simply imported into TerrSet. 
 
 3.2.2 Normalized Difference Vegetation Index 
 The red and near infrared bands of the eight total Landsat 8 and Sentinel-2 images were used to 
derive a normalized difference vegetation index (NDVI) image for each tile using the following equation 
(Pettorelli et al. 2005): 

 
Equation 1. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  (𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑅𝑅𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑅𝑅𝑅𝑅) 

 
 For Landsat 8 images, NDVI was equal to (B5 - B4)/(B5 + B4). For Sentinel-2 images, NDVI 
was equal to (B08 - B04)/(B08 + B04). The resulting images all had values between -1 and 1, where low 
values indicate pixels with lower vegetative vigor and higher values indicate pixels with higher vegetative 
vigor. 
 
 3.2.3 Principal Component Analysis 
 For each Landsat 8 scene and each Sentinel-2 tile, the blue, green, red, and NIR bands were 
added to a raster group file in TerrSet.  Using the principal component analysis (PCA) module in TerrSet, 
the first principal component for each scene/tile was extracted. For the Landsat-derived DF model, 83% 
of overall dataset variability was explained by the first component. For the Sentinel-derived DF model, 
91% of overall dataset variability was explained by the first component. PCA was run using the Forward 
T-Mode analysis type and an unstandardized covariance matrix. PCA was used to pull out the largest 
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amount of spectral variability within the original datasets while removing redundancy between band files 
(Richards, 2013). 
 
 3.2.4 Mosaic Datasets to Raster Group Files 
 All image files were reprojected from UTM 11N to NAD 1983 Idaho Transverse Mercator (TM) 
and mosaiced in ArcGIS Pro using bilinear resampling to create continuous layers for each band, NDVI, 
and PCA layers for both Landsat 8 and Sentinel-2 imagery. These mosaiced layers were then clipped to 
the minimum bounding box around the study area for further analysis. The topography and distance to 
streams layers were continuous over the state of Idaho, so they were also clipped to the same dimensions 
as the satellite imagery-derived layers. These layers were then imported again into Idrisi TerrSet and 
compiled into two raster group files (RGF) where one RGF contained the mosaiced and clipped Landsat 8 
band layers, NDVI, PCA, and 30-m topographic variables and the other RGF contained the mosaiced and 
clipped Sentinel-2 band layers, NDVI, PCA, and 10-m topographic variables and distance to streams 
layer.  
 

3.2.5 Field Sites 
 To train and validate the models, a set of field sites was created using a combination of field 
observations, interpretation of aerial imagery, and the LANDFIRE Existing Vegetation Type (EVT) 
model (USDOI, USGS, USDA, 2023). While this study focused on aspen in particular, the field sites for 
model training and validation were grouped into ten land cover classes shown in Table 2 below. 

 
Table 2. Ten land cover classes were used for classification with Decision Forest in Idrisi TerrSet. 

Class ID Class Name Samples (n) 
1 Aspen 191 
2 Sagebrush steppe 145 
3 Conifer 25 
4 Agriculture 134 
5 Water 290 
6 Impervious surfaces 53 

7 Basalt 125 
8 Riparian 41 
9 Cottonwood 76 

10 Maple 132 
 
 The points for each landcover class were randomly subset in ArcGIS Pro using a 50-50 split. In 
other words, half of the points were used for training the decision forest models and the other half were 
reserved for independent validation of the models. The training and validation point feature classes were 
converted to raster layers with 30-m resolution to match the Landsat 8 imagery and with 10-m spatial 
resolution to match the Sentinel-2 imagery. 
 
3.3 Decision Forest Modeling  
 Using the Decision Forest module in Idrisi TerrSet, the RGF files described above in section 3.2.4 
were used as inputs for the Decision Forest models. The parameters for each model run were as follows: 3 
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variables allowed at each split, 100 trees (model iterations), output hard classification image, and output 
probability images. The Decision Forest was trained using the rasterized training field sites layer 
described above 

 
3.4 Model Validation 
 Both models were validated using the Error Matrix (ErrMat) module in TerrSet. The output hard 
classification model was used as the categorical map image to be tested against the raster layer containing 
reserved validation field sites as the input ground truth image. ErrMat creates an error matrix that 
tabulates the different land cover classes assigned in the ground truth image. It determines how many 
instances of each class were classified in agreement between the output model and the validation sites.  
Similarly, it also calculates the number of instances where the classified model and validation data do not 
agree and are thus, are considered in error. Furthermore, ErrMat calculates the error of omission and the 
error of commission for each class, as well as overall error, and the kappa index of agreement (KIA) for 
each class and for the overall model.  
  
3.5 Statistically-Derived Probability Thresholds for Aspen Presence 
 To calculate and compare predicted aspen acreage, the statistically-derived cutoff threshold 
(SDCT) was used. The mean probability value of reserved points was used as the SDCT for each model 
resulting in a mean probability of 0.67 for the LDDFM and 0.58 for the SDDFM. Pixels with values 
greater than or equal to the SDCT for each model were assumed to contain pure, dense aspen and were 
subsequently used for acreage calculations. 
 For the watershed-level analysis of probability values, only pixels with a value of 0.25 or higher 
were used to help produce meaningful, non-zero mean probability values (NOTE:  the vast majority of 
pixels in every watershed in the study area were not predicted to contain aspen and thus have an aspen 
probability of zero). 
 
3.6 Zonal Statistics by Watershed and Acreage Calculations 
 Using the HUC08 watersheds basins layer, zonal statistics were run to calculate the acreage of 
predicted aspen presence at or above the overall probability threshold value for each model (0.67 and 0.58 
for LDDFM and SDDFM, respectively). Assuming the area of each pixel predicted to be aspen was 
composed entirely of aspen, the calculation of acreages followed Equation 2: 

 
Equation 2: 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑅𝑅𝑝𝑝 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑅𝑅𝑝𝑝 𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴 ∗  0.000247105 

  
4. RESULTS 
 Output from the decision forest included a probability layer for each land cover class and a hard 
classified land cover layer. For the purposes of this study, the aspen probability layer is of most interest 
along with the hard classified image from each of the two models. The aspen probability layers had pixel 
values ranging from 0 to 1 where values closer to zero indicate a low probability of aspen presence at a 
given pixel and values closer to one indicate a higher probability of aspen presence at a given pixel. These 
were used to derive the SDCT layers for calculating and comparing predicted aspen acreage between the 
two models. The LDDF aspen SDCT layer was multiplied by the SDDF aspen SDCT layer to determine 
where both models predicted aspen, then the two layers were subtracted to show where one model 
predicted aspen and the other did not (Figure 2).  



7 
 

 

 
Figure 2. Comparison of agreement in model-predicted aspen presence above the mean probability threshold from 
the LDDFM and SDDFM. Pink pixels show where both models predicted aspen and cyan pixels show where one 
model predicted aspen while the other did not. The SDDFM predicted aspen more often than the LDDFM 
particularly in the northwest and eastern corners of the study area. 

Total acreage at or above each SDCT shows the SDDFM predicted 51% more aspen across the 
study area, (783,000 acres) compared to the LDDFM which predicted approximately 467,000 acres 
(Table 3).  

 When each hard classified model output was validated against the reserved validation field sites, 
the LDDFM resulted in higher accuracy compared to the SDDFM (Table 4). The LDDFM had the fewest 
number of aspen validation pixels classified incorrectly, the fewest number of other cover type validation 
pixels classified as aspen, and a higher KIA for both the aspen class and overall model, relative to the 
SDDFM.  
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Table 3. Predicted acreage of aspen within each watershed at or above the study area’s mean probability threshold 
for the Landsat 8 decision forest model (LDDFM) and the Sentinel-2 decision forest model (SDDFM). The percent 
difference between the predicted acreage of aspen from each model is shown in the column on the right. The 
predicted acreage and percent difference for the overall study area is shown in the bottom row.  

 Acres Difference 

ID HUC08 Watershed Code LDDFM  SDDFM  Acreage Percent 

1 16010102 3,198 7,762 4,564 83 
2 16010201 34,535 64,602 30,067 61 
3 16010202 19,524 32,756 13,232 51 
4 16010204 3,890 5,152 1,262 28 
5 16020309 2,103 3205 1,102 42 
6 17040104 80,244 140,177 59,933 54 
7 17040105 54,445 953,56 40,911 55 
8 17040201 1,983 2,553 570 25 
9 17040202 14,850 33,581 18,731 77 
10 17040203 6,482 19,937 13,455 102 
11 17040204 37,694 79,216 41,522 71 
12 17040205 54,462 66,330 11,868 20 
13 17040206 7,417 9,163 1,746 21 
14 17040207 82,312 117,117 34,805 35 
15 17040208 58,544 81,868 23,324 33 
16 17040209 4,866 5,092 226 5 
17 17040214 5 0 -5 -200 
18 17040215 7 2,853 2,846 199 
19 17040216 3 7,519 7,516 200 
20 17040217 28 6,835 6,807 198 
21 17040218 18 1,819 1,801 196 
 OVERALL  466,614 782,894 316,280 51 

 
 Table 4. Validation of hard classified model outputs against reserved field sites including Kappa Index of 
Agreement (KIA) for both the Landsat 8 decision forest model (LDDFM) and Sentinel-2 decision forest model 
(SDDFM). 

 Aspen Class Accuracy KIA 

  Users’  Producer’s  Aspen Overall 

LDDFM 0.82 0.90 0.87 0.92 
SDDFM 0.78 0.77 0.71 0.86 

 
 When values from the decision forest model probability output layers for the aspen class were 
extracted to the validation points for both models, SDCT was 0.67 for the LDDFM and 0.58 for SDDFM 
suggesting the predictive power of the LDDFM was greater than that of the SDDFM. Results of the 
watershed-level analysis in modeled probability of pixels with a value of 0.25 or higher showed more 
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mixed results with two watersheds having the same mean probability value for both models, nine 
watersheds had higher mean probability values with the LDDFM, and ten watersheds having higher mean 
probability values with the SDDFM (Table 5). 
 
Table 5. Table of zonal statistics results for the mean of probability values greater than or equal to 0.25 for each 
HUC08 watershed in the study area. 

 Mean probability > 0.25 

ID HUC08 Code LDDFM  SDDFM  

1 16010102 0.53 0.55 
2 16010201 0.55 0.55 
3 16010202 0.53 0.56 
4 16010204 0.52 0.49 

5 16020309 0.55 0.50 
6 17040104 0.52 0.54 

7 17040105 0.57 0.57 
8 17040201 0.54 0.51 
9 17040202 0.47 0.48 
10 17040203 0.46 0.50 
11 17040204 0.53 0.56 
12 17040205 0.54 0.53 
13 17040206 0.51 0.46 
14 17040207 0.56 0.55 
15 17040208 0.51 0.50 
16 17040209 0.52 0.46 
17 17040214 0.43 0.30 
18 17040215 0.31 0.47 
19 17040216 0.31 0.48 
20 17040217 0.30 0.42 
21 17040218 0.30 0.40 

 
5. CONCLUSIONS 
 Based on validation results, the LDDFM had higher accuracy than the SDDFM. The LDDFM 
also had a higher mean probability value at validation field sites than the SDDFM. The percent difference 
between LDDFM-predicted aspen acreage and SDDFM-predicted aspen acreage at or above the mean 
probability value for the total study area was 51%. At the HUC08 watershed level, the SDDFM predicted 
higher acreage of aspen than the LDDFM in 20 of the 21 watersheds within the study area. 
 These results suggest that for studying general trends in aspen population distribution, Landsat’s 
30-meter spatial resolution is adequate.  However, detecting individual aspen trees or small stands for 
precise inventory is not possible at this resolution. The 10-meter spatial resolution of the SDDFM did not 
improve model accuracy and predicted nearly twice as much aspen overall. This suggests Sentinel-2 
imagery is also not able to provide small stand detection. 
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  A likely source of uncertainty in this study is the way acreage was calculated. The area of each 
pixel at or above the selected probability threshold value (0.67 for the LDDFM and 0.58 for the SDDFM) 
was assumed to represent homogeneous, dense stands of aspen. However, given the size of pixels 
analyzed in the study (900 square meters for Landsat 8, 100 square meters for Sentinel-2), and the 
proximity of aspen to other cover classes, many --if not most-- of the predicted aspen pixels likely 
contained other types of vegetation along with aspen.  In fact, while aspen is likely present, it may not be 
considered dominant. 
 Given the wide range of stand density observed during field work, and visible, but variable 
understory, Sentinel-2 10-m spatial resolution does not appear to have fine enough spatial resolution to 
accurately predict individual aspen trees on the landscape. Additionally, a continuous archive of 30-meter 
spatial resolution Landsat imagery is available from the year 1972 to present, whereas 10-m Sentinel 
imagery is only available from 2015 to present, giving Landsat-based modeling the advantage of allowing 
for landscape-level trend analysis of aspen populations across a greater temporal range than would be 
possible using Sentinel imagery. If land managers are interested in producing a more accurate inventory 
of existing aspen stands, exploring finer spatial resolution commercial imagery is recommended.  
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