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ABSTRACT Studies of resource selection form the basis for much of our understanding of wildlife habitat requirements, and resource

selection functions (RSFs), which predict relative probability of use, have been proposed as a unifying concept for analysis and interpretation of

wildlife habitat data. Logistic regression that contrasts used and available or unused resource units is one of the most common analyses for

developing RSFs. Recently, resource utilization functions (RUFs) have been developed, which also predict probability of use. Unlike RSFs,

however, RUFs are based on a continuous metric of space use summarized by a utilization distribution. Although both RSFs and RUFs predict

space use, a direct comparison of these 2 modeling approaches is lacking. We compared performance of RSFs and RUFs by applying both

approaches to location data for 75 Rocky Mountain elk (Cervus elaphus) and 39 mule deer (Odocoileus hemionus) collected at the Starkey

Experimental Forest and Range in northeastern Oregon, USA. We evaluated differences in maps of predicted probability of use, relative

ranking of habitat variables, and predictive power between the 2 models. For elk, 3 habitat variables were statistically significant (P , 0.05) in

the RSF, whereas 7 variables were significant in the RUF. Maps of predicted probability of use differed substantially between the 2 models for

elk, as did the relative ranking of habitat variables. For mule deer, 4 variables were significant in the RSF, whereas 6 were significant in the

RUF, and maps of predicted probability of use were similar between models. In addition, distance to water was the top-ranked variable in both

models for mule deer. Although space use by both species was predicted most accurately by the RSF based on cross-validation, differences in

predictive power between models were more substantial for elk than mule deer. To maximize accuracy and utility of predictive wildlife–habitat

models, managers must be aware of the relative strengths and weaknesses of different modeling techniques. We conclude that although RUFs

represent a substantial advance in resource selection theory, techniques available for generating RUFs remain underdeveloped and, as a result,

RUFs sometimes predict less accurately than models derived using more conventional techniques. ( JOURNAL OF WILDLIFE

MANAGEMENT 73(2):294–302; 2009)
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Studies of resource selection form the basis for much of our
understanding of wildlife habitat requirements (Morrison et
al. 1998, Manly et al. 2002, Scott et al. 2002). Information
about relationships between wildlife populations and their
habitat is used for many purposes, including characterization
of long-term resource requirements (Forsman et al. 1984,
Schoen and Kirchhoff 1985) and prediction of potential
impacts of habitat change (Edwards and Collopy 1988,
Green and Stowe 1993). Although simple analytical
techniques such as selection ratios and goodness-of-fit tests
are available for quantifying resource use (e.g., proportion of
time spent in a particular habitat type) and selection
(amount of use of a resource relative to its availability;
Alldredge and Ratti 1986, 1992; Manly et al. 2002; Thomas
and Taylor 2006), more complex models have become the
primary means of assessing wildlife–habitat relationships
and generating predictions about the consequences of
habitat change (Morrison et al. 1998, Wiens 2002, Marzluff
et al. 2004). An evaluation of how new habitat modeling
techniques perform relative to more traditional approaches

is important for advancing methodology in wildlife ecology
and for increasing our understanding of resource selection
and habitat management.

Manly et al. (2002:ix) proposed the resource selection
function (RSF) as ‘‘a unified theory for the analysis and
interpretation of data on resource selection.’’ An RSF
predicts relative probability of use of different resource units
based on measured characteristics of those units (Manly et
al. 2002). As such, RSFs can be used to predict relative
probability of use across a landscape based on mapped
distributions of resources or to evaluate the relative influence
of different habitat characteristics on species distributions.
One of the most common techniques for producing an RSF
is logistic regression, which contrasts used versus available or
used versus unused resource units (e.g., Mace et al. 1996,
Johnson et al. 2000, Osborne et al. 2001, Anderson et al.
2005). Use of logistic regression for this purpose, however,
has been criticized for a variety of reasons, including
arbitrary definition of resource availability (Aebischer et al.
1993), use of relocation points rather than individual
animals as the sampling units (Aebischer et al. 1993, Gillies
et al. 2006, Thomas and Taylor 2006), lack of sensitivity to
changes in the value of habitat variables that results from
dichotomous characterization of the response variable (i.e.,
either used or not used; O’Connor 2002), and model
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development that does not consider the spatial arrangement
of resources (Klute et al. 2002). In addition, validity of using
logistic regression to estimate an RSF based on a use-
availability design recently has been debated in the literature
(Keating and Cherry 2004, Johnson et al. 2006).

A new approach to modeling resource selection recently
was proposed by Marzluff et al. (2004). Rather than a simple
binary characterization of resource units, the approach of
Marzluff et al. (2004) considers use as a continuous variable
summarized by a utilization distribution (UD). Multiple
regression techniques are used to produce a spatially explicit
resource utilization function (RUF), which relates the UD
to a suite of continuous or categorical resource variables.
The height of the UD at each location within its extent
provides a measure of relative use and may be used as the
response variable in the model (Marzluff et al. 2004). In
addition, because RUFs for individual animals are averaged
to produce a population-level model, the individual animal
is the sampling unit. Millspaugh et al. (2006) noted that the
RUF technique developed by Marzluff et al. (2004)
represented a new approach to calculating a resource
selection probability function (Manly et al. 2002) for
individual animals. Nevertheless, to maintain consistency
with Marzluff et al. (2004), we refer to resource selection
models derived from individual UDs as RUFs.

Although RUFs may represent a theoretical improvement
over use of logistic regression to model resource selection, a
direct comparison of the 2 modeling approaches is lacking.
Our goal was to compare and contrast the results of using
RUFs versus RSFs to model resource selection by Rocky
Mountain elk (Cervus elaphus) and mule deer (Odocoileus

hemionus) at the Starkey Experimental Forest and Range
(Starkey) in northeastern Oregon, USA. Starkey represents
an ideal model system for such a comparison because a
detailed habitat database is available for the study site
(Rowland et al. 1998) and patterns of resource use by elk
and mule deer have been documented extensively by
previous research (Johnson et al. 2000, Stewart et al. 2002,
Ager et al. 2003). Specifically, we addressed the following 4
questions: 1) Do the 2 models identify the same variables as
being important predictors of space use? 2) Is the direction
of the relationship between use and each habitat variable
(indicated by the sign of the regression coeff) consistent
between models? 3) Do maps of predicted probability of use
differ between the 2 models? and 4) Does predictive power
differ between the 2 models?

STUDY AREA

We conducted our study on the Starkey Experimental Forest
and Range in northeastern Oregon, USA. Starkey (458120N,
118830W) was a 101-km2 research area located 35 km
southwest of La Grande, Oregon, in the Blue Mountains and
managed by the United States Forest Service. A 2.4-m-high
New Zealand woven-wire fence enclosed Starkey and
prevented immigration or emigration of large herbivores
(Rowland et al. 1997). This ungulate-proof fence also divided
Starkey into 5 research areas, 4 of which were used for

telemetry studies of mule deer, elk, and cattle during spring to
fall. We used location data collected in Main Study Area (77.6
km2), which was 2–4 times larger than the average home
range size reported for elk in the Blue Mountains (Leckenby
1984). Habitat choices available to elk and mule deer were
similar to those available outside of Starkey. Traffic levels,
recreational activities, and timber management also were
similar to patterns of use on nearby public lands (Rowland et
al. 1997, Preisler et al. 2006). Elevations at Starkey ranged
from 1,120 m to 1,500 m, and the site supported a mosaic of
coniferous forests, shrublands, and grasslands, with moder-
ately sloping uplands dissected by numerous drainages
(Johnson et al. 2000, Stewart et al. 2002). Detailed
descriptions of Starkey are provided by Skovlin (1991),
Wisdom et al. (1993), and Rowland et al. (1997, 1998).

METHODS

Animal Locations and Habitat Variables
We radiocollared and released adult female elk and mule
deer into Main Study Area during early spring (Mar–Apr)
of 1999–2001. We typically recovered collars in winter
(Nov–Jan) and we placed new collars on a different sample
of animals the following spring so that we generally
monitored individuals for only 1 year. All animal handling
was in accordance with protocols approved by an established
Animal Care and Use Committee (Wisdom et al. 1993).
We determined animal locations using a LORAN-C
automated telemetry system (Findholt et al. 1996, Rowland
et al. 1997). We collected telemetry data 24 hours/day with
occasional exceptions due to equipment maintenance or
repair, and we obtained a location for each radiocollared
animal every 1–5 hours. Mean position error of animal
locations was 53 6 5.9 (SE) m (Findholt et al. 1996).

We limited our analyses to locations collected during
spring (30 Apr–14 Jun) because this represents a critical
period for both elk and mule deer due to the need to recover
from the physiological stresses of winter and to meet
energetic demands of reproduction (Johnson et al. 2000,
Cook 2002). In addition, we only used locations collected
during crepuscular hours (61 hr of sunrise and sunset) when
habitat selection was assumed to be strongly influenced by
forage distribution (Johnson et al. 2000). We included in
our analysis animals with �30 locations during this period,
although mean number of locations per animal was
substantially higher (89 for elk, 85 for mule deer). Our
dataset included 107 elk (9,569 locations) and 44 mule deer
(3,761 locations). We evaluated spatial independence of
individual animals within species and years using association
matrices (Weber et al. 2001), which indicated within-year
independence of all animals in our dataset.

We included the following habitat variables with demon-
strated potential to influence distribution of elk and mule
deer at Starkey (Rowland et al. 1998, Johnson et al. 2000,
Stewart et al. 2002) as predictor variables in our analyses:
aspect (transformed with sine and cosine functions to
measure east–west and north–south aspects, respectively);
distance to permanent water (m); convexity (m; a measure of
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topographical complexity); slope (%); canopy closure of
trees .12 cm diameter at breast height (%); and distance to
open (open to public access) and restricted (access restricted
to authorized personnel) roads (m). Each of these variables
can influence space use by elk and mule deer by affecting
energy balance, risk of predation, or proximity to humans.
For example, green-up of forage at Starkey following winter
occurs first on south-facing slopes with an open canopy,
which may attract both elk and mule deer to those areas in
spring. In addition, energetic costs of locomotion are
substantially greater in steep terrain (Parker et al. 1984),
yet predators often favor easily traversable terrain (Ozoga
and Harger 1966, Farmer et al. 2006). Consequently, slope
(and potentially convexity) can alter patterns of space use by
influencing trade-offs between energy expenditure and risk
of predation. Previous research at Starkey also has indicated
that elk strongly avoid roads, whereas mule deer tend to be
located close to roads (primarily to avoid elk; Johnson et al.
2000, Rowland et al. 2000). We note, however, that
although previous studies at Starkey largely have evaluated
resource selection within the boundary of the Experimental
Forest (second-order selection; Johnson 1980), models we
developed describe resource selection within individual
home ranges (third-order selection; Johnson 1980). The
RUF approach described by Marzluff et al. (2004) was
designed primarily to evaluate resource selection within the
home range boundary, and therefore we developed both
RUFs and RSFs at this scale to facilitate our comparison of
the 2 modeling approaches. We obtained values for all
habitat variables except canopy closure from a 30 3 30-m
pixel basis from the Starkey habitat database for ungulate
research (Rowland et al. 1998). The habitat database
consists of a series of raster-based Geographic Information
System layers, details of which are given by Rowland et al.
(1998). We derived canopy closure from photo interpreta-
tion of 1:12,000 color aerial photos. We examined a
correlation matrix (PROC CORR; SAS Institute 2002) to
detect collinearity between predictor variables; we elimi-
nated no variables due to collinearity (greatest jrj ¼ 0.37
between slope and distance to open road).

Model Development and Validation
We calculated RUFs for individual elk and mule deer as
described by Marzluff et al. (2004). The first step in this
process was to estimate individual UDs using location data
for each animal. We used the ANIMAL MOVEMENTS
extension of ArcView 3.3 (Hooge and Eichenlaub 1997)
with fixed-kernel home range estimation and the least
squares cross-validation option for bandwidth selection
(Silverman 1986, Kernohan et al. 2001) to estimate
individual 99% UDs. We chose this extension because it
provides the values of the UD as a response surface or kernel
grid, information needed to construct RUFs. In addition,
Marzluff et al. (2004) used ANIMAL MOVEMENTS in
developing the RUF technique. We opted to output the
kernel grid for each UD with a 30 3 30-m cell size to match
the resolution of our habitat data.

We estimated relative use at each 30 3 30-m grid cell

within 99% UDs using the FOCAL PATCH extension of
ArcView 3.3, which measured the height of the kernel
density estimate over each cell (Marzluff et al. 2004). The
result was a point file containing the x- and y- coordinates
for the center of each grid cell and the associated relative use
value. To account for spatial bias in the rate at which we
obtained telemetry locations in our study area (Johnson et al.
1998), we multiplied relative use values by the inverse of the
observation rate for each grid cell and then rescaled them to
their original range of 1–99. We also clipped UDs at the
fence marking the Starkey boundary, although ,5% of the
volume of each UD was typically located outside the fence.
The number of cells in each UD ranged from 4,725 to
53,663 for elk and from 756 to 14,727 for mule deer.

We estimated RUFs for each animal in our dataset using
multiple regression in an RUF analysis package designed for
use in the statistical program R (Marzluff et al. 2004). Each
RUF represented the relationship between the UD of an
individual animal and either 7 (elk) or 6 (mule deer) unique
habitat variables. For each species, we only included variables
with demonstrated potential to influence space use at
Starkey based on previous research at that site (Johnson et
al. 2000, Stewart et al. 2002). The RUFs also accounted for
spatial autocorrelation inherent in each UD with 2 spatial
parameters that we estimated jointly with the coefficients for
each habitat variable (Handcock and Stein 1993, Marzluff et
al. 2004). Further details on estimation of spatial parameters
and on the specific spatial correlation structure applied in the
RUF analysis package are provided by Marzluff et al. (2004).

We systematically subsampled 10% of grid cells in each elk
UD and 33% of cells in each mule deer UD prior to analysis
because of computational constraints. With one gigabyte of
random access memory (RAM) available, the number of
predictor variables we used combined with the size and
complexity of the matrices that must be constructed to
estimate the 2 spatial parameters in the RUF analysis package
limited the number of grid cells that we could include in each
model to roughly 5,500. We began our sampling routine at
the northwestern-most grid cell in each UD and, moving
across the UD from left to right and from top to bottom, we
selected every 10th cell for elk and every third cell for mule
deer for inclusion in our analyses. In addition, for some
animals (n¼32 elk and 5 mule deer) the maximum likelihood
procedure applied in the RUF analysis package was unable to
estimate a variance for one or both of the spatial parameters.
The reason for this problem was unclear, but because
estimates of regression coefficients in those cases were
questionable (M. S. Handcock, University of Washington,
personal communication), we chose not to include those
animals in further analyses. Final reduced sample sizes for
comparison of RUFs to RSFs were 75 elk and 39 mule deer.

Once we calculated the RUF for each animal, we averaged
unstandardized coefficients for each habitat variable across
animals to produce a population-level RUF for each species
(Marzluff et al. 2004; Sawyer et al. 2006, 2007). We
calculated variance estimates for average unstandardized
coefficients according to Marzluff et al. (2004, eq 2), which
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quantified uncertainty in the average value of each coefficient
for the animals in our sample but did not include interanimal
variation. We used a t-statistic to determine which variables
would remain in the final model for each species (a � 0.05).
We then used average unstandardized coefficients for those
variables to map predicted probability of use by elk and mule
deer across the Starkey landscape. We calculated stand-
ardized partial regression coefficients for individual models
according to Marzluff et al. (2004, eq 1). In addition, we
averaged standardized coefficients for significant variables
across individuals, and we used the absolute value of the
averaged coefficients to rank the relative importance of each
variable to the 2 species (Marzluff et al. 2004). We obtained
variance estimates for average standardized coefficients using
standard sampling statistics and were therefore conservative
due to inclusion of interanimal variation in the calculation
(Marzluff et al. 2004).

We calculated RSFs for individual elk and mule deer based
on a use-availability design as described by Manly et al. (2002).
The 99%UD boundary for each animal represented the spatial
extent of our analyses. We assigned locations for each animal
(75 elk, 39 mule deer) to a 30 3 30-m grid cell to determine
values of associated habitat variables. We then cast an equal
number of random locations within each 99% UD to
determine availability of habitat characteristics. We fit a
logistic regression model to the dataset for each animal (PROC
LOGISTIC; SAS Institute 2002) and used the resulting
coefficients to estimate an RSF (Manly et al. 2002, eq 5.11).

Our approach to calculating population-level RSFs for elk
and mule deer was similar to the approach we used to
calculate population-level RUFs. We averaged unstandar-
dized regression coefficients for each habitat variable across
individuals and used a t-statistic to determine which
variables would remain in the final model for each species.
We calculated variance estimates for average coefficients in
the same manner as for the RUFs and used the final
population-level models to map predicted probability of use
by each species across the Starkey landscape. We averaged
standardized regression coefficients for each habitat variable
across animals to rank the relative importance of each
variable to the population. We also calculated variance
estimates for those coefficients in the same way as for the
RUFs. Averaging regression coefficients across animals
allowed us to develop RUFs and RSFs in a comparable
manner and to give each animal equal weight in the final
models for each species. In addition, although actual values
of both unstandardized and standardized coefficients from
RUFs and RSFs were not directly comparable as a result of
the different procedures used to produce each type of model
(i.e., linear vs. logistic regression), evaluating the sign of
those coefficients (þ,�, or nonsignificant) at the population
level, as well as their relative rank, provided a useful
comparison of the 2 model types.

We mapped predicted probability of use by elk and mule
deer across the Starkey landscape by calculating relative
selection probabilities for all grid cells in the study area using
RUFs and RSFs with unstandardized coefficients. We

assigned each cell and its associated predicted value to 1 of 4
categories based on the quartiles of the distribution of
predicted values for each map (Sawyer et al. 2007). We
classified cells with the highest 25% of predicted values as
high-use areas (4), cells in the 51 to 75 percentiles as areas of
medium-high use (3), cells in the 26 to 50 percentiles as
areas of medium-low use (2), and cells in the 0 to 25
percentiles as low-use areas (1). We evaluated similarity
between maps generated by each model type qualitatively
based on the spatial distribution of cells in each category.

We used k-fold cross-validation (Boyce et al. 2003) to
evaluate predictive strength of the RUF and RSF for each
species. In each iteration of the procedure, we withheld one
animal as test data and used the remaining animals (74 elk or
38 mule deer) as model training data. This procedure was
appropriate for the scale of our analyses (third-order selection;
Johnson 1980), because population-level models were de-
signed to predict relative probability of use by an individual
animal in our sample within its home range regardless of where
that home range was located in the study area. A similar
procedure was used by Anderson et al. (2005) to validate third-
order models of resource selection. The data we used to
generate each type of model were inherently different (RSFs
were generated directly from location data whereas RUFs were
based on estimated UDs), and hence the cross-validation
procedure for the RUFs differed slightly from that of the RSFs.

We based the cross-validation procedure for the RUFs on
the methods of Johnson et al. (2000). In our case, however,
the test dataset in each iteration of the cross-validation was
the UD of an individual elk or mule deer. We obtained RUF
values (predicted values of relative use) for each grid cell in the
test dataset using the model derived from the training data.
We then associated an observed relative use value (actual UD
ht) and a predicted relative use value with each grid cell in the
test data. We sorted those data from lowest to highest based
on the RUF (predicted) values and binned them into 8 groups,
each containing an equal number of grid cells. We then
regressed the sum of the observed values in each bin against
the sum of the predicted values in each bin and recorded the
coefficient of determination and slope. We considered the
combination of a high coefficient of determination and a
positive slope to be indicative of a model that predicted well
(Johnson et al. 2000, Anderson et al. 2005). Therefore, we
averaged coefficients of determination and slopes across 75
cross-validation iterations for elk and 39 iterations for mule
deer to provide a measure of the overall predictive strength of
the RUF for each species. As an additional measure of overall
predictive strength, we calculated the ratio of positive to
negative slopes and positive and significant to negative and
significant slopes across all cross-validation iterations for both
species. We determined significance of the regression in each
iteration based on a � 0.05.

We used the cross-validation procedure described by
Anderson et al. (2005) to evaluate predictive strength of
the RSF for each species. In each iteration of the procedure,
we used the model derived from the training data to obtain
RSF values (predicted values of relative use) for the random
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locations for each species. We then sorted random locations
from lowest to highest based on their RSF values and binned
them into 8 groups, each of which contained an equal
number of locations (Boyce et al. 2003, Anderson et al.
2005). Next we obtained RSF values for the test data and
placed locations in the test dataset into the bins we created
with the random data based on their associated RSF values
(Anderson et al. 2005). We then regressed the number of
locations from the test dataset in each bin against the median
RSF value of the random locations in each bin and recorded
the coefficient of determination and slope. As in the RUF
cross-validation procedure, we considered the combination
of a high coefficient of determination and a positive slope to
be indicative of a model that predicted well. Therefore, we
also used mean coefficient of determination and slope values
across the entire set of cross-validation iterations and the
ratio of positive to negative slopes and positive and
significant to negative and significant slopes to evaluate
overall predictive strength of the RSF for each species.

Although the cross-validation procedure for each model
type differed slightly, the underlying assumption in both
cases was that observed use should increase with predicted
use in a linear fashion (Johnson et al. 2000). Furthermore,
the perfect model in both cases should have resulted in R2¼

1 and a significant positive slope for the regression in each
iteration. We therefore considered the results of the cross-
validation for each model type to be directly comparable,
with the exception of the mean slope values.

RESULTS

Considerable differences were evident between the 2
population-level models for elk. Only 3 habitat variables
(i.e., convexity, sine of aspect, and % slope), all related to
topography, were statistically significant in the RSF for elk,
whereas all 7 variables were significant in the RUF (Table 1).
In addition, the coefficient for percent slope was positive in
the RUF for elk, indicating selection for steeper slopes, and
negative in the RSF, indicating selection for gentle slopes
(Table 1). Differences between models were less substantial
for mule deer. Four of six habitat variables (i.e., distance to
water, distance to restricted road, % slope, and convexity)
were significant in the RSF, whereas all 6 variables were
significant in the RUF for mule deer (Table 2). Of the 4
variables that were significant in both models, only distance
to restricted roads had a coefficient that differed in sign
between models (positive in the RUF, indicating avoidance
of areas located close to restricted roads, and negative in the
RSF, indicating selection of those areas; Table 2).

Table 1. Parameter estimates and relative ranking of habitat variables for a resource utilization function (RUF) and a resource selection function (RSF) for elk
(n¼ 75) at the Starkey Experimental Forest and Range, Oregon, USA. We based models on location data collected with a LORAN-C automated telemetry
system during spring (30 Apr–14 Jun) of 1999–2001 within 1 hour of sunrise or sunset.

Variable

Elk RUF Elk RSF

b SE
Standardized

b
Standardized

b SE
Relative

ranka b SE
Standardized

b
Standardized

b SE
Relative

ranka

Intercept 3.39 0.17 8.61 1.27
Distance to water �8 3 10�4 2 3 10�5 �0.16 0.12 1 NSb

Distance to restricted road �4 3 10�4 1 3 10�5 �0.16 0.20 2 NS
Distance to open road �2 3 10�4 1 3 10�5 �0.12 0.26 3 NS
Convexity 0.01 3 3 10�4 0.05 0.06 4 0.04 6 3 10�3 0.10 0.02 2
Sine of aspect �0.06 2 3 10�3 �0.04 0.05 5 �0.08 0.03 �0.04 0.02 3
Canopy closure �1 3 10�3 7 3 10�5 �0.04 0.11 6 NS
Percent slope 3 3 10�4 1 3 10�4 0.01 0.06 7 �0.02 3 3 10�3 �0.10 0.02 1

a Ranking based on absolute value of standardized coeff. (b).
b NS, not significant (P � 0.05).

Table 2. Parameter estimates and relative ranking of habitat variables for a resource utilization function (RUF) and a resource selection function (RSF) for
mule deer (n¼ 39) at the Starkey Experimental Forest and Range, Oregon, USA. We based models on location data collected with a LORAN-C automated
telemetry system during spring (30 Apr–14 Jun) of 1999–2001 within 1 hour of sunrise or sunset.

Variable

Mule deer RUF Mule deer RSF

b SE
Standardized

b
Standardized

b SE
Relative

ranka b SE
Standardized

b
Standardized

b SE
Relative

ranka

Intercept 3.91 0.34 6.95 2.17
Distance to water 4 3 10�3 4 3 10�5 0.80 0.34 1 1 3 10�3 3 3 10�4 0.12 0.03 1
Distance to restricted

road
5 3 10�4 2 3 10�5 0.18 0.31 2 �4 3 10�4 1 3 10�4 �0.06 0.03 3

Cosine of aspect �0.24 4 3 10�3 �0.15 0.07 3 NSb

Percent slope �7 3 10�3 2 3 10�4 �0.09 0.06 4 �9 3 10�3 4 3 10�3 �0.03 0.03 4
Sine of aspect �0.05 4 3 10�3 �0.04 0.06 5 NS
Convexity 3 3 10�3 7 3 10�4 6 3 10�4 0.07 6 0.04 8 3 10�3 0.09 0.02 2

a Ranking based on absolute value of standardized coeff. (b).
b NS, not significant (P � 0.05).
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Similar to modeling results based on unstandardized
coefficients, relative ranking of habitat variables based on
standardized coefficients differed substantially between
model types for elk but not mule deer. The highest ranking
variable in the RUF for elk was distance to water, which was
not significant in the RSF for this species; the highest
ranking variable in the RSF for elk was percent slope, which
ranked last in the RUF (Table 1). In addition, none of the 3
variables that were significant in the RSF for elk ranked
among the top 3 in the RUF (Table 1). Ranking of variables
for mule deer, however, was more consistent between model
types. Distance to water was the highest ranking variable in
both the RUF and RSF for mule deer (Table 2). In addition,
of the 4 variables that were significant in the RSF for mule
deer, 3 also ranked among the top 4 in the RUF (Table 2).
The biggest discrepancy between model types for mule deer
with respect to variable ranking was convexity, which ranked
sixth in the RUF but second in the RSF (Table 2).

Maps of predicted probability of use generated from RUFs
and RSFs also differed markedly between model types for
elk but not mule deer (Fig. 1). In contrast to elk, the spatial

pattern of predicted probability of use generally was similar
between models for mule deer. In other words, locations of
grid cells predicted to have the highest and lowest relative
probabilities of use were comparable between models for
mule deer but were noticeably different between models for
elk (Fig. 1). We also note that predictive maps generated
from RUFs for both species appeared smoother with less
spatial variability than maps generated from RSFs.

Cross-validation tests indicated that RSFs performed
better than RUFs for both elk and mule deer. The magnitude
of the difference in predictive strength between model types,
however, differed between species. Mean coefficients of
determination across 75 cross-validation iterations for elk
were comparable between the 2 model types, but mean slope
of the regression line across all iterations was negative for the
RUF, indicating that predicted relative use values from that
model frequently were inversely related to observed use
values (UD ht). Mean slope of the regression line for the
RSF, however, was positive (Table 3). Similarly, the ratio of
positive to negative slopes was nearly 3 times greater for the
RSF than the RUF for elk, and the ratio of positive and
significant to negative and significant slopes for the RSF was
nearly 4 times greater than that of the RUF (Table 3). In
contrast, the mean coefficient of determination of the RUF
for mule deer was nearly double that of the RSF for that
species across 39 cross-validation iterations, and mean slope
of the regression line across all iterations was positive for
both models (Table 3). In addition, the overall ratio of
positive to negative slopes was comparable between model
types for mule deer, whereas the ratio of positive and
significant to negative and significant slopes for the RSF was
.7 times greater than that of the RUF (Table 3).

DISCUSSION

Much of our understanding of wildlife habitat selection is
based on RSF models often developed using logistic
regression. Resource selection models based on UDs offer
alternatives that address some of the limitations identified in
RSF analyses (Millspaugh et al. 2006). Reconciling results
from these 2 modeling approaches is necessary to link past
and future studies of habitat selection. Our work provides a
direct comparison between approaches.

Results of our RUF-based analyses of resource selection
differed markedly from those of the RSF-based analyses,
particularly for elk. Although differences between the 2

Figure 1. Predicted relative probability of use by elk (n¼ 75) and mule deer
(n ¼ 39) in Main Study Area, Starkey Experimental Forest and Range,
Oregon, USA, generated from resource utilization functions (RUFs) and
resource selection functions (RSFs). We based models of resource selection
on location data collected with a LORAN-C automated telemetry system
during spring (30 Apr–14 Jun) of 1999–2001 within 1 hour of sunrise or
sunset.

Table 3. Cross-validation results for resource utilization functions (RUFs) and resource selection functions (RSFs) for elk (n¼ 75) and mule deer (n¼ 39) at
the Starkey Experimental Forest and Range, Oregon, USA. We based models on location data collected with a LORAN-C automated telemetry system
during spring (30 Apr–14 Jun) of 1999–2001 within 1 hour of sunrise or sunset.

Model

Mean
Slope frequency

Ratioa

R2 Slope Positive Negative
Positive

(significant)
Negative

(significant) P:N PS:NS

Elk RUF 0.52 �1.95 37 38 20 23 0.97 0.87
Elk RSF 0.46 4 3 10�7 55 20 20 6 2.75 3.33
Mule deer RUF 0.61 1.49 22 17 17 9 1.29 1.89
Mule deer RSF 0.36 1 3 10�7 25 14 14 1 1.79 14.00

a P:N, ratio of positive to negative slopes; PS:NS, ratio of positive and significant to negative and significant slopes.
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model types consistently were greater for elk than mule deer,
the RSF performed better for both species with respect to
predictive strength. Differences in the relative ranking of
habitat variables also are noteworthy because substantially
different ecological conclusions and management implica-
tions follow from them. For example, the population-level
RUF for elk indicated that proximity to water was the most
important factor influencing space use decisions by females.
This result could lead to management actions designed to
increase availability of water for elk. In contrast, proximity
to water did not enter the population-level RSF, and thus it
is unlikely that water management would be considered
based on that model. Based on our results, we suggest that
although RUFs may represent a substantial advancement in
resource selection theory (Marzluff et al. 2004, Millspaugh
et al. 2006), more work is necessary to make the models
broadly applicable. Specifically, we identify avenues for
future refinement that fall into 2 broad categories: 1)
improvements in the techniques used to estimate the UD
and 2) improvements in the statistical models used to link
the UD to underlying habitat characteristics.

Several techniques are available for estimating UDs, and
none perform best under all circumstances (Millspaugh et al.
2006). Yet, choice of the UD estimator likely affects results
of resource selection models that use the UD to define space
use. Although fixed-kernel analysis is a common method for
estimating the UD, other methods might more accurately
represent space use under differing conditions. For example,
space use for territorial species for which UDs should have
abrupt edges might more appropriately be quantified using
the home range model based on an exponential power
function (Horne and Garton 2006a). Similarly, the
Brownian Bridge approach to UD estimation might be
most appropriate when location data are collected at
relatively frequent intervals (Horne et al. 2007). Horne
and Garton (2006a) provided a review of different home
range models and a method for assessing the fit of various
home range estimators to a given dataset. Such an approach
would facilitate selection of the most appropriate method for
estimating the UD and hence, the best framework for
evaluating habitat selection using the RUF approach.

When kernel analyses are used to produce the UD, the
method for selecting the bandwidth (and the resulting
smoothing parameter) might affect how well the UD
characterizes space use (Kernohan et al. 2001, Gitzen and
Millspaugh 2003, Millspaugh et al. 2006) and, as a result,
how well an RUF characterizes the relationships between
use and various underlying habitat characteristics. We used
the least squares cross-validation (LSCV) method of
bandwidth selection to estimate UDs. The LSCV approach,
however, suffers from high sampling variability and, in some
instances, selects bandwidth values that are too small,
resulting in under-smoothing of the UD (Silverman 1986,
Millspaugh et al. 2006). In contrast, the LSCV option in
ANIMAL MOVEMENTS potentially over-smoothes es-
timates of the UD by consistently fixing the bandwidth at
roughly 90% of the reference bandwidth (A. Rogers,

Ontario Ministry of Natural Resources, personal commu-
nication). Either scenario could negatively affect perform-
ance of RUFs. For example, over-smoothing the UD might
decrease the ability of the RUF to detect subtle relationships
between the height of the UD and underlying habitat
characteristics (Millspaugh et al. 2006). Other bandwidth
selection methods might provide better estimates of the UD.
Techniques such as plug-in and solve-the-equation methods
(Wand and Jones 1995, Kernohan et al. 2001) and
likelihood cross-validation (Horne and Garton 2006b) may
prove useful in UD-based analyses of resource selection.

In addition to the choices of a UD estimator and
bandwidth selection method, RUFs could be sensitive to
the size of the UDs on which they are based. In an RUF
analysis, the height of a UD at each grid cell is used as the
response variable in a multiple regression model (Marzluff et
al. 2004). The distribution of use values (cell-specific UD
ht) derived from a large UD will often be more heavily
skewed towards low use values than those derived from a
smaller UD. A high degree of skewness in the distribution
of the response variable in a linear regression model could
introduce bias into estimates of regression coefficients and
predicted values (Neter et al. 1996). Therefore, smaller UDs
might sometimes lead to less biased estimates of regression
coefficients in an RUF analysis.

The size of a UD (in addition to available RAM) also might
affect the proportion of a dataset that can be included in the
modeling process. In our study, the average area covered by
mule deer UDs was roughly 33% of that covered by elk UDs.
As a result, distributions of relative use values for mule deer
UDs tended to be less skewed than those for elk, and we were
able to subsample roughly 30% of mule deer UDs but were
limited to 10% of elk UDs. This could help to explain why
modeling results were more similar between model types for
mule deer than for elk. Regardless of estimation techniques,
the size of a UD or home range is largely a function of the
biology of the species under study, and our results indicate
that RUFs might be most useful for evaluating resource
selection by species with small home ranges.

The second category of improvements necessary to make
RUF analyses more broadly applicable relates to the
techniques used to link the UD to underlying habitat
characteristics. Theoretically, one of the major benefits of
RUFs is that they account for spatial autocorrelation among
grid cells in the UD. Marzluff et al. (2004) accounted for
spatial autocorrelation by incorporating a maximum like-
lihood procedure into their RUF analysis package that
jointly estimates RUF coefficients and 2 spatial parameters
that describe the degree of autocorrelation in a dataset.
Therefore, coefficients for models produced in the RUF
analysis package were adjusted for the effects of spatial
autocorrelation (Marzluff et al. 2004, Millspaugh et al.
2006). This likely explains why predictive maps generated
from RUFs appeared smoother than maps generated from
RSFs. Individual RUFs are constructed such that predicted
values for specific locations are a function not only of the
values of habitat variables at those locations, but also of the
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values of the response variable (UD ht) associated with
nearby grid cells. This spatial dependency of the predicted
values also is reflected in the population-level model. One
potential problem with the estimation procedures used in
the RUF analysis package, however, is the assumption of
one underlying spatial correlation structure and associated
correlation function. A number of different correlation
structures are available for describing spatial dependence.
For example, exponential, Gaussian, linear, rational quad-
ratic, and spherical correlation structures are described for
use in linear mixed-effects models by Pinheiro and Bates
(2000). No correlation structure is universally best for
describing spatial dependence. Therefore, we suggest that
allowing the user to fit different correlation structures would
represent a positive step towards more fully realizing the
theoretical benefits of accounting for spatial autocorrelation
when modeling resource selection using UDs.

An additional challenge is that RUFs are multiple linear
regression models that must adhere to the standard
assumptions of linear regression analysis (Marzluff et al.
2004). For example, constancy of error variance and normally
distributed residuals are both assumed in RUF analysis (Neter
et al. 1996). Diagnostics designed to assess validity of those
assumptions, however, cannot be performed for the pop-
ulation-level RUF because there is no observed response
variable for that model. This characteristic also precludes use
of an information-theoretic approach to model selection at
the population level. Consequently, diagnostics and trans-
formations can only be carried out at the level of the
individual animal. Because the models for individuals are
averaged to produce the population-level RUF, all of the
same variables and transformations of variables must be
present in each individual model. Transformation of a
variable may be appropriate or even necessary for some
animals and entirely inappropriate for others. In such cases it
is unclear whether the transformation should be performed
for all animals or none of the animals. In a broader sense, how
diagnostics and remedial measures should proceed in an RUF
analysis needs to be defined. At the very least, we suggest that
criteria be developed for determining whether or not a
transformation is likely to improve the overall fit or validity of
a population-level RUF if the measure is performed for all
individuals in a dataset. For example, if a specific trans-
formation appears appropriate for .50% of the individuals in
a dataset, then applying that transformation to all individuals
may improve predictive power of the population-level model.

MANAGEMENT IMPLICATIONS

We offer several suggestions to managers interested in
modeling wildlife–habitat relationships. First, managers
should consider the average home range size of the species
under study before choosing a modeling approach. The
RUF approach may be most useful for evaluating resource
selection by species with small home ranges. In the case of
large herbivores, which tend to have relatively large home
ranges, traditional RSF approaches may provide more
reliable information on patterns of resource selection than

the RUF approach, and therefore, until the RUF approach is
further refined, we suggest that managers of large herbivore
populations continue to use traditional approaches to
modeling resource selection. Second, managers should
carefully consider the spatial scale of interest when choosing
an approach to modeling resource selection. If resource
selection within a larger study area is of interest rather than
resource selection within the home range, then the
proportion of a dataset that can be included in construction
of an RUF may be reduced even further than we reported,
which could limit the utility of RUF analyses in such cases.
Finally, regardless of which modeling approach is used, we
strongly encourage managers to evaluate the predictive
power of their models using cross-validation; neither RUFs
nor RSFs with low predictive power should serve as a basis
for making management decisions.
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