Understanding RDBMS

IT4GIS
Keith T. Weber, GISP
GIS Director
ISU-GIS Training and Research Center

FUNDAMENTALS

RDBMS
• Relational Database Management System
• The “I” in GIS (Information)
BTW

• The Wisdom Pathway

Data Information Knowledge Wisdom

Database software...

• Light Duty
• Medium Duty
• Heavy Duty

Database software...

• Light Duty
• Medium Duty
• Heavy Duty
IBM DB2 UDB

- The GIS Center’s heavy hitter - IBM DB2, Universal

Spreadsheets vs. Databases

- Integrity!
- Structure

RDBMS CONCEPTS AND TERMS
Independence

- Physical
- Logical

Integrity

- Important for consistency and transaction management.
- Types:
 - Domain: all values come from predefined domains or are null
 - Redundancy: problems occur as a result of repetitive storage that is not consistently updated and from stored data that is derived from other stored data. Redundant info must be consistent.

Integrity (cont’d)

- Constraint: Business integrity. Stored data must not violate business rules.
- Entity: Every record must be uniquely identifiable (index field or ObjectID)
- Referential: Relationships must not be ambiguous. Two types…
 - Cascading or non-cascading
Key Fields
• Unique Identifiers (?)
 – Primary key
 – Foreign key
• AKA- Relate fields.

RDBMS STRUCTURE

Database Tables

Database

Table1

Table2

Table3
Table Structure

<table>
<thead>
<tr>
<th>ROW 1 (RECORD OR ENTITY)</th>
<th>COLUMN 1</th>
<th>COLUMN 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROW 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Value Types

<table>
<thead>
<tr>
<th>Type Name</th>
<th>Average Occupied Data Value</th>
<th>Valid Domain Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Integer</td>
<td>2 bytes</td>
<td>-32,768 to 32,767</td>
</tr>
<tr>
<td>Long Integer</td>
<td>4 bytes</td>
<td>-2,147,483,648 to 2,147,483,647</td>
</tr>
<tr>
<td>Float</td>
<td>4 bytes</td>
<td>Any number from -10^{38} to 10^{38}</td>
</tr>
<tr>
<td>Double</td>
<td>8 bytes</td>
<td>Any number from -10^{308} to 10^{308}</td>
</tr>
<tr>
<td>Text (string)</td>
<td>10 + max. length = bytes</td>
<td>Any alphanumeric characters</td>
</tr>
<tr>
<td>Date</td>
<td>8 bytes</td>
<td>Jan 1, 100 to Dec 31, 9999</td>
</tr>
<tr>
<td>LOB (variant)</td>
<td>22 + max. length = bytes</td>
<td>Any alphanumeric characters</td>
</tr>
</tbody>
</table>

(btw) **Raster Data Types Worth Knowing**

- **1_BIT**—A 1-bit unsigned integer. The values can be 0 or 1.
- **2_BIT**—A 2-bit unsigned integer. The values supported can be from 0 to 3.
- **4_BIT**—A 4-bit unsigned integer. The values supported can be from 0 to 15.
- **8_BIT_UNSIGNED**—An unsigned 8-bit data type. The values supported can be from 0 to 255.
- **8_BIT_SIGNED**—A signed 8-bit data type. The values supported can be from -128 to 127.
- **16_BIT_UNSIGNED**—A 16-bit unsigned data type. The values can range from 0 to 65,535.
- **16_BIT_SIGNED**—A 16-bit signed data type. The values can range from -32,768 to 32,767.
- **32_BIT_UNSIGNED**—A 32-bit unsigned data type. The values can range from 0 to 4,294,967,295.
- **32_BIT_SIGNED**—A 32-bit signed data type. The values can range from -2,147,483,648 to 2,147,483,647.
- **32_BIT_FLOAT**—A 32-bit data type supporting decimals.
- **64_BIT**—A 64-bit data type supporting decimals.
Making Sense of all this…

• Recall, there are 8-bits in 1-byte
• Cross-reference
 – 8-bit is byte data
 – 16-bit is short integer (2 bytes)
 – 32-bit (signed or unsigned) is long integer (4 bytes)
 – 32-bit (float) is single-precision floating point (4 bytes)
 – 64-bit is double-precision floating point (8 bytes)

DATABASE DESIGN

Basic Steps in Database Design

• Understand and document the business’ needs.
 – Problem statement
 – Business object types
 – Business relationships
 – Business constraints
• Create an ERM
• Data and process inventory
• Develop tuple types
• Tuple types to tables
• Integrity
• Populate the database
A Scenario...

- Develop a GIS-Based Tourism database for Southeast Idaho.

Document the business needs

- What problem or issue is this database going to address?
- This is a business statement

READING A BUSINESS STATEMENT
Identify Candidate Classes

• A candidate class may or may not remain a class throughout the design process
• A candidate class may or may not become a table
• Do not think about tables and relationship classes at this point

Think Object-Oriented

• Classes are nouns
• A noun is a “person, places, and things”

And now... Verbs

• Candidate methods are verbs
 – They show action
 – They are behaviors
Methods

- Identifying *candidate* methods allows us to better understand how the business operates and how the Enterprise uses GIS data.
- A method is a behavior…a relationship between classes
- The candidate methods will describe an inheritance, aggregation, or dependency relationship

DATABASE DESIGN (CONT’D)

The Preliminary ERM

- Symbolized.
 - Standard Representation
 - Attribute Representation
 - Entity Instance Representation

| DINING | | K Restaurant Number: 126
Name: Burger King
Type of food: Fast |
Relationships

• Determine the relationships between your entity types.
• Add these to the ERM

Define the List

• Database Dictionary
 – Restaurant_Name
 • The name of the restaurant
 – Food_Type
 • Categories of food (e.g., 1 = Continental, 2 = Fast food, etc.)
 – Cost_Mean
 • The average cost of all regular menu items

Develop Tuple Types

• Use your ERM with relationships
• Perform a “Walk-through” exercise
 – Simulate information is being added/used in your database.
• Symbolize using Attribute Representation
Normalization

- First-Fifth Form Normal (1FN, 2FN, ...5FN)
- Academic
- Applied

1FN

- All values are atomic
 - Single cell contains single data value
- Eliminate repeating groups
 - Puppy_Trick1, Puppy_Trick2, ...
 - ...
2FN

- Satisfy 1FN and…
- Redundant data must be eliminated
 - How?
 - Example: Puppy_ID, Trick_ID, Trick_Name
3FN

• Satisfy 1NF and 2FN and…
• No non-key attributes are dependent on other non-key attributes.
 – Example: Appointment_ID, Name, Date, Time, Species

After Normalization

• New tuple types will be created.
• New tables will be planned.
• Many-many relationships will be handled using associative tables (bridge tables).

De-Normalization

• What? Is this heresy?
Designing the Actual RDBMS

• Visual modeling based upon your ERM and Tuple type model.
• Implementation of integrity rules based upon your business constraints.

Populate...

• Questions and concerns to revisit
 – Null data
 – Reporting discrepancies and variations
 – Measuring or estimating methods
 – Client utility/efficiency

The Last Step?

Validation!
Questions?