Fusion Of Hyperspectral And LiDAR Models
Characterizing
Semi-arid Vegetation (Sagebrush)

Jacob T Mundt, David R Streutker, Nancy F Glenn
Idaho State University
Boise Center Aerospace Laboratory

Presented at the ASPRS 2005 Annual Conference
March 7-11, 2005 - Baltimore, MD
Outline of Presentation

• Study Area and Data
• Hyperspectral Data and Analysis
• LiDAR Data and Analysis
• Product Fusion
• Conclusions
• Questions
Study Area

- Reduced vegetation cover
- Spectrally ‘intermediate’
- Dry
- Abundant litter and dry grass
- Increased soil exposure
- Soil variability
- Non-linear mixing
Data

Hyperspectral (HyMap 3.5m pixels)

Field GPS

LiDAR
(Airborne 1 – 1.2 m postings)
Objectives

• To effectively map the distribution of sagebrush.
• Applications to range management and habitat inventory.
• To constrain potential difficulties and benefits of utilizing high resolution remote sensing data in a semiarid environment.
"Sagebrush"

‘*Artemisia tridentata*’ or mixed ecosystem?
Hyperspectral Processing

• Spectral subsets
• Different endmembers
• Classification strategy
• Interpretative assessment
Hyperspectral Results

Producer’s Accuracy = 91%
User’s Accuracy = 64%
Total Accuracy = 75%

Sagebrush Classification Error Matrix

<table>
<thead>
<tr>
<th>Classified</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Absent</td>
<td>Present</td>
</tr>
</tbody>
</table>
LiDAR Processing
LiDAR Results

- Statistically separable populations
- Greater understanding of vegetative structure
- Quantifiable results at very high resolution
- Higher quality obtainable than just using field measurements

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Standard Deviation</th>
<th>F-Statistic (F_{crit}= 1.02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Pixel Height (cm)</td>
<td>7.8 / 9.6</td>
<td>7.1 / 9.2</td>
<td>3.5 / 2.8</td>
<td>1.52</td>
</tr>
<tr>
<td>Mean Vegetation Height (cm)</td>
<td>10.0 / 11.9</td>
<td>9.0 / 11.3</td>
<td>4.2 / 3.2</td>
<td>1.72</td>
</tr>
<tr>
<td>Percent Bare Soil</td>
<td>7.0 / 19.4</td>
<td>6.0 / 18.2</td>
<td>4.5 / 4.3</td>
<td>2.50</td>
</tr>
<tr>
<td>Roughness (cm)</td>
<td>6.8 / 9.2</td>
<td>5.9 / 8.5</td>
<td>3.8 / 3.5</td>
<td>1.17</td>
</tr>
<tr>
<td>Tallest Vegetation (cm)</td>
<td>34.1 / 53.2</td>
<td>30.0 / 51.0</td>
<td>15.2 / 16.4</td>
<td>1.17</td>
</tr>
</tbody>
</table>
Coregistration

Polynomial Resampling to 16 GCPs

Residual Error of 11.5 m (9 ICPs) – Local Variance

Resampled to 13.8 m (3 hyperspectral pixels)
Fused (Coregistered) Product

12 Band Product
• MTMF classification (2)
• Hyperspectral Reflectance (4)
• LiDAR Intensity
• LiDAR Roughness
• LiDAR Mean Heights (2)
• LiDAR Tallest Vegetation
• LiDAR Percent Bare Soil
Fusion Hypothesis

LiDAR variables can enhance classification accuracy and stand structure descriptions.

<table>
<thead>
<tr>
<th></th>
<th>Sagebrush Absent</th>
<th>Sagebrush Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (cm)</td>
<td>7.0</td>
<td>9.1</td>
</tr>
<tr>
<td>Median (cm)</td>
<td>5.8</td>
<td>8.1</td>
</tr>
<tr>
<td>Integer Mode (cm)</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Standard Deviation (cm)</td>
<td>4.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Number of Samples</td>
<td>88</td>
<td>64</td>
</tr>
<tr>
<td>F - Statistic</td>
<td></td>
<td>1.57</td>
</tr>
<tr>
<td>F - Critical</td>
<td></td>
<td>1.48</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>0.03</td>
</tr>
</tbody>
</table>
Fusion Results

<table>
<thead>
<tr>
<th>Classification Strategy</th>
<th>Producer’s Accuracy</th>
<th>User’s Accuracy</th>
<th>Overall Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF greater than 0</td>
<td>91%</td>
<td>64%</td>
<td>75%</td>
</tr>
<tr>
<td>MF greater than 0 AND Feasibility less than ?</td>
<td>72%</td>
<td>75%</td>
<td>74%</td>
</tr>
<tr>
<td>MF greater than 0 AND Roughness between 6.5 and 75</td>
<td>88%</td>
<td>86%</td>
<td>87%</td>
</tr>
<tr>
<td>MF greater than 0 AND Feasibility less than ? AND Roughness between 6.5 and 75</td>
<td>84%</td>
<td>92%</td>
<td>89%</td>
</tr>
</tbody>
</table>

![Plots showing frequency distribution of tallest vegetation height](image)

- **Sagebrush Present**
- **Sagebrush Absent**
Conclusions and Future Work

• Hyperspectral data has a demonstrated ability to discriminate rangeland vegetation and weeds.
• High spatial resolution data provides high spatial resolution maps for inventory and management decision support.
• Semiarid environments are difficult in the context of remote sensing, however intensive processing can result in a worthwhile product.
• The next generation: operational level implementation via focus areas and indicator plots.
Acknowledgements

This study was made possible by a grant from the National Aeronautics and Space Administration Goddard Space Flight Center (NAG5-2301). ISU would also like to acknowledge the Idaho Delegation for their assistance in obtaining this grant.

This work was partially supported by the Idaho National Laboratory (INL) through the Idaho State University - INL Partnership for Integrated Environmental Analysis Education Outreach Program. We are also thankful to Ron Rope, Shane Cherry, and Tanya Johnson for field and office assistance.

Questions?

Jacob T Mundt
Research Associate
Idaho State University
mundjaco@isu.edu
208-685-6769