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ABSTRACT 
This study evaluates ten remote sensing indices to detect burned areas and burn severity in a southeastern 
Idaho study area. While fire-related studies have been performed in forested ecosystems, few have been 
conducted in sagebrush steppe rangelands. Burn severity, defined as the completeness of aboveground 
vegetation removal during the burn, is useful in determining the type and location of treatment(s) that 
land managers can implement to speed recovery, and thus assess effectiveness and speed of landscape 
recovery. This study utilizes pre- and post-fire field based sampling as ground control for image 
processing of Landsat ETM+ and SPOT 5 multispectral imagery. Single and multi-date indices were 
validated through accuracy assessment techniques. Remote sensing indices comparing burned with 
unburned areas had better overall, user’s, and producer’s accuracies than indices comparing levels of burn 
severity. The best burn versus unburned index was the Soil Adjusted Vegetation Index (SAVI; 100% 
overall accuracy) derived from SPOT imagery, and the best burn severity index was the relative 
differenced Normalized Burn Ratio (RdNBR; 73% overall accuracy) derived from Landsat imagery. 
These two indices provided the highest user’s and producer’s accuracies. 
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INTRODUCTION 
Introduction and Statement of the Problem 
Roughly 35-40% of the terrestrial earth’s surface is comprised of arid and semi-arid lands (Rahman and 
Gamon, 2004; Anderson and Inouye, 2001; McGwire et al., 2000).  Specifically, sagebrush steppe is the 
largest semiarid vegetation type in North America, yet it is critically endangered (Anderson and Inouye, 
2001). In order to properly manage rangelands, it is essential to have a clear understanding of their 
ecological processes, functions, and the mechanisms driving change. For instance, fire has a powerful 
influence on ecosystem function and dynamics. Wildland fire is the primary cause of destruction in 
sagebrush steppe, where erosion hazard is high, vegetation is dry, and perennial vegetation recovery rates 
are slow (Ruiz-Gallardo et al., 2004; Whitford, 2002; and Wright and Bailey, 1982). Fire frequencies 
range from 15-100 years in sagebrush steppe ecosystems (Wright and Bailey, 1982; Ratzlaff and 
Anderson, 1995; Miller and Rose, 1999; Harniss and Murray, 1973; Watts and Wambolt 1996; and 
Brown et al., 2000). Moreover, fire frequencies have increased due to an abundance of fire-prone 
introduced annuals (i.e. Bromus tectorum) or short-lived perennials, and due to fuel loading following 
many years of fire suppression (Anderson and Inouye, 2001; Keeley et al., 1999; Diaz-Delgado et al., 
2002; Obrist et al., 2003; Whisenant, 1990; Brown et al., 2000). From 1995 to 2005 wildland fires burned 
approximately 24,277,866 ha in the US compared with 19,828,021 ha burned between 1960 to 1970 
(NIFC, 2006). When managing rangelands, the multitude of fire effects need to be accounted for and 
monitored to update fuel model/vegetation data bases, and to assess ecosystem damage and benefit, the 
success or failure of a treatment, the possible need for rehabilitation, and vegetation change effects for 
wildlife concerns or erosion potential (Lutes et al., 2003). The need for information about burned areas 
(i.e. perimeter and area) has increased; moreover, it is essential to understand the heterogeneity of burn 
severity patterns within a fire perimeter (van Wagtendonk et al., 2004). Burn modeling and maps 
(severity, frequency, pattern, size, etc.) provide useful information for land planning, risk assessment, and 
evaluation of ecological conditions such as the structure, composition, and function of ecosystems 
(Morgan et al., 2001). Knowledge of within-burn variability fosters understanding of fire’s effects such as 
burn severity, vegetation recovery, and succession enhancing post-fire rehabilitation and remediation 
efforts (Roy et al., 2006). For example, burn severity information is useful in determining the type and 
location of treatment(s) that land managers can implement and later assess effectiveness and rate of 
landscape recovery. Simple and cost-effective techniques need to be established to map fire effects, such 
as burn severity and extent, within rangelands. Remote sensing with satellite imagery offers the ability to 
evaluate burned areas across multi-temporal and multi-spatial scales (Morgan et al., 2001). Satellite data 
are useful for examining fire effects because 1) they can be used to qualitatively and quantitatively 
evaluate vegetation over multi-temporal and spatial scales, 2) they can be relatively low in cost, 3) they 
can systematically cover large and inaccessible areas (in many instances fires are located in remote areas), 
and 4) they can capture data from parts of the electromagnetic spectrum that humans cannot sense (i.e. 
infrared), which provide useful information specific to vegetation and soils.  
 
Definitions of burn severity differ, as well as the amount of time elapsed between a fire occurrence and 
when burn severity is assessed (Ryan and Noste, 1983; Miller and Yool, 2002; Roy et al., 2006; Key and 
Benson, 2006); however, for this research, burn severity is defined as the completeness of the burn, or the 
damage to the vegetation immediately after the fire. Often confused with the term burn intensity which 
refers to the level of heat produced and flame length, our definition of burn severity includes how 
thoroughly the vegetation was burned, regardless of the pre-existing fuel load. 
This study hypothesizes that burn severity can be modeled with remote sensing techniques using either 
single date imagery or multi-temporal differencing incorporated with pre- and/or post-fire field data. A 
sub-study to this project includes testing the hypothesis that pre-fire fuel loads are correlated with burn 
severity levels. 
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BACKGROUND 
Remote Sensing 
Remote sensing is the science of collecting data about a feature(s) on earth without being in physical 
contact with the subject of interest. Lillesand et al. (2004) describe it as the science and art of acquiring 
information about an object, area, or phenomenon by analyzing data that is acquired by a device not in 
contact with that which it is observing. Biophysical characteristics and human activities can be measured 
and monitored with this technology (Jensen, 2000). Images are taken of the earth’s surface capturing 
energy (i.e. light) from the electromagnetic spectrum. The spectral composition of this radiated energy 
represents information about the physical properties of vegetation, soil, and water. Parts of the 
electromagnetic spectrum (i.e. visible bands and infrared bands) are separated from the remaining data 
and analyzed using remote sensing software. The spectral information from the feature of interest is put 
into an interpretable form with remote sensing segmentations, techniques, and indices. We can detect 
change over time applying multi-temporal remote sensing techniques, which is comparing imagery from 
different time periods.  
 
Remote Sensing of Vegetation in Semi-Arid Environments 
Special remote sensing problems need to be considered in rangeland ecosystems due to the variability 
within the vegetation (or the lack of) and the presence and high reflectance of soil. These rangeland 
characteristics contribute to the unreliability of remote sensing of vegetation along with: nonlinear mixing 
due to multiple scattering of light, evolutionary adaptations (making desert plants spectrally dissimilar 
and lacking a strong red edge), spectral variability within the same species (due to spatially discontinuous 
precipitation patterns), open shrub canopies (affecting near infrared (NIR) reflectance), small plant 
canopies, and varying phenological status of plant canopies across space and time (Asner and 
Heidebrecht, 2002; Okin et al., 2001). Because there tends to be an abundance of bareground in sagebrush 
steppe rangeland ecosystems and soil reflectance is often brighter than vegetation reflectance, bareground 
‘dilutes’ the vegetation signature. There are many vegetation indices used to detect vegetation parameters; 
however, problems exist with using these in rangeland ecosystems because they do not account for soil 
background variations (Qi et al., 1994). This phenomenon of soil influencing the interpretation of 
vegetation has been well documented (Bannari et al., 1995; Huete, 1988; Huete, 1989; Qi et al., 1994; 
Schmidt and Karnieli, 2001). It has also been shown that the variation in soil brightness (i.e. wet vs. dry, 
and different soil association characteristics) can affect the results of vegetation indices (Schmidt and 
Karnieli, 2001; Asner, 2004). Examples of indices used in semiarid environments include the normalized 
difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and modified soil adjusted 
vegetation index (MSAVI). 
 
The normalized difference vegetation index (NDVI; equation 1), attributed to Rouse et al. (1973), is a 
remote sensing technique used to estimate vegetation biomass. The NIR band of the electromagnetic 
spectrum make this measure sensitive to the physiological activity of plants and the red band is sensitive 
to vegetation and soil discrimination (Jensen, 2000). Though vegetation has been monitored on global 
scales using the NDVI, it is a poor indicator of vegetation biomass when vegetation cover is low, such as 
in semiarid rangelands (Huete et al., 1987; Schowengerdt, 1997). This index varies between negative 1 to 
positive 1. 

   
dReNIR
dReNIR

+
−

    (1) 

 
The soil adjusted vegetation index (SAVI) is a transformation technique which minimizes soil brightness 
and soil variations using the red and near-infrared wavelengths as well as a constant soil adjustment factor 
L. Huete (1988) found that an adjustment factor of 0.5 reduced soil noise across a range of broad-leaf 
cotton and narrow-leaf grass canopy densities. Huete determined that an adjustment factor of 0.5 could be 
used across different vegetation densities and different soil types.  

53 
 



 Final Report: Impact of Temporal Landcover Changes in Southeastern Idaho Rangelands 

 

 

The inductive modified soil adjusted vegetation index (MSAVI) is useful to detect vegetation in arid 
environments because of its ability to account for high bareground reflectance using a variable soil 
adjustment factor L (Qi et al., 1994). The MSAVI remote sensing index uses an iterative inductive 
equation to calculate L. Furthermore, MSAVI iteratively calculates L until the soil cannot be minimized 
any more.  
 
Remote Sensing of Burns and Burn Severity 
The application of remote sensing for burned area analysis has increased recently utilizing several 
different sensors, resolutions, and techniques (Garcia and Chuvieco, 2004). Many studies have been 
performed in forested ecosystems to determine burn severity within a burn perimeter (Patterson and Yool, 
1998; Wimberly and Reilly, in press; Turner et al., 1994; White et al., 1996; van Wagtendonk et al., 2004; 
Brewer et al., 2005; Epting and Verbyla, 2005; Epting et al., 2005), but few have been carried out 
specifically in areas with reduced vegetation cover (Smith et al., 2005; Roy et al., 2006) or specifically 
within semiarid sagebrush steppe ecosystems.  
 
The traditional technique to detect burned areas and burn severity is by estimating biomass loss with the 
NDVI (Salvador et al., 2000; Flasse et al., 2004; Diaz-Delgado et al., 2003). However, bands in the 
visible spectrum can be susceptible to atmospheric interference and less sensitive to changes in burned 
landscapes than infrared bands. The NDVI was used until about 1999, when Lopez Garcia and Caselles 
(1991) developed an algorithm later coined by Key and Benson as the normalized burn ratio (NBR; 
equation 2) using Landsat imagery (Key and Benson, 1999b; Salvador et al., 2000; Key and Benson, 
2004a; Key and Benson, 2006). Since then, it is the most widely used method on large fires (>500 acres) 
for perimeter and burn severity detection on public lands (Cocke et al., 2005; Key and Benson, 2006). 
 

7 Band4 Band
7 Band4 Band

+
−

                     (2) 

 
Where:  Band 4 = Landsat Band 4 (.76-.90 µm) 

  Band 7 = Landsat Band 7 (2.08-2.35 µm) 
 
The NBR algorithm was developed in a mild-warm/subtropical climate study area composed of 2/3 forest 
and 1/3 scrub/bush using Landsat 5 (TM) (Lopez Garcia and Caselles, 1991). A correlation matrix of the 
reference and burned area was performed to determine the most uncorrelated pair of Landsat bands. The 
shortwave infrared (SWIR) band increases most after fire, and the near infrared band decreases most after 
fire. As a result, their technique uses the near-infrared and shortwave infrared bands because these bands 
correspond best with vegetation change due to fire in the forested ecosystem in which it was developed. 
Later the algorithm was put to ardent use by Key and Benson (1999b, 2004a, 2006) within forested 
ecosystems using Landsat TM/ETM+ imagery (NBR, equation 2). Landsat data have been traditionally 
used to map burned areas and fire severity (White et al., 1996; Patterson and Yool, 1998; Key and 
Benson, 1999b, 2004a; Santos et al., 1999; Salvador et al., 2000; Miller and Yool, 2002; Diaz-Delgado et 
al., 2003; Garcia and Chuvieco, 2004; Howard and Lacasse, 2004; van Wagtendonk et al., 2004; Brewer 
et al., 2005; Epting et al., 2005; Cocke et al., 2005; Roy et al., 2006). The NBR index is evaluated by 
correlating the index with field-based composite burn index (CBI) values. Performed in the field, the CBI 
was developed by Key and Benson (1999a, 2004b) as an ocular measurement of fire severity within each 
study plot that corresponds with sensor radiometric response data. CBI data include percent of foliage and 
litter/moss consumed, as well as percent of re-sprouting vegetation. 
 
A differenced NBR (dNBR) is used to offer a quantitative measure of environmental change due to the 
fire, or temporal difference (Key and Benson, 1999b; Key and Benson, 2004a). The dNBR represents a 
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scaled index of the magnitude of change caused by fire (van Wagtendonk et al., 2004). To do this, the 
post-fire NBR data set is subtracted from the pre-fire NBR data set (equation 3). 
 

dNBR = NBRpre-fire – NBRpost-fire  (3) 
 

There are two types of dNBR severity measures, an initial assessment and an extended assessment. The 
initial assessment represents immediate change: the post-fire scene is acquired immediately after the fire. 
However, the extended assessment represents recovery of the plant community. The post-fire scene is not 
acquired until the next growing season, which could be as early as a few weeks or 11 months after the 
fire, depending on the season of fire (Key and Benson, 2004a). The pre-fire scenes for each assessment 
are taken within the same seasonal period, either the same year or an earlier year (to match phenological 
timing).  
 
The NBR and dNBR may or may not be applicable in rangeland ecosystems due to vegetation re-growth 
times with respect to the seasonality of the burn. For instance, it takes longer for forested ecosystems to 
recover to pre-fire conditions (i.e., having the same reflectance) than rangelands. Alternatively, depending 
on pre-fire condition and the season of the burn in rangelands, vegetation can recover as early as the end 
of the same growing season, or as up to 10 years following the fire.  
 
Several single date and multi-date approaches have been compared for the assessment of burn severity in 
forests such as those by Epting et al. (2005) and Brewer et al. (2005). Epting et al. (2005) evaluated 13 
remote sensing techniques as both single date and multi-date analyses including: three Landsat TM and 
ETM+ band ratios (bands 7/4, 7/5, 4/5); three vegetation indices (NDVI, SAVI, MSAVI); two 
multivariate transformations (a Kauth-Thomas Tasseled Cap transformation including greenness and 
wetness components, and Second Principal Components Analysis); normalized burn ratio (NBR; and 
differenced normalized burn ratio (dNBR)), and single TM bands 4, 6, and 7. Though Epting et al. (2005) 
had highest results (correlating field measures of fire severity with mapped fire severity) with the dNBR 
in forested areas, they determined that the dNBR may not be appropriate for estimating burn severity in 
non-forested areas. Brewer et al. (2005) compared six remote sensing indices: two principal components 
analyses; two artificial neural network classifications (a back propagation and a k-nearest neighbor); and 
two normalized difference indices (NBR and a modified NBR which replaced Landsat band 7 with band 
5). Out of the six methods compared, Brewer et al. (2005) determined that the dNBR was the simplest 
method that does not introduce analyst input error (i.e., human bias) with the advantage that it can be used 
anywhere in the continental U.S. They separated forest (unburned, low severity, and high severity 
classes), shrub, and grass vegetation (unburned and burned classes), and resulted in 100% user accuracies 
for the burned/unburned shrub categories when compared with National Land Cover Data. Roy et al. 
(2006) agree that the dNBR is suboptimal in non-forested areas because of its insensitivity to burn 
severity. Miller and Thode (in revision) found that a Landsat relative dNBR (Table 1; RdNBR) performs 
better than the absolute dNBR at detecting high burn severity areas from moderate burn severity in a 
mixed forest/shrubland study area. Gerard et al. (2003) developed an algorithm coined the normalized 
difference SWIR (NDSWIR; Table 1) to map fire scar burns using pre-fire and post-fire SPOT NIR (0.84 
µm) and SWIR (1.66µm) bands. The SPOT SWIR band is useful for the detection of old fire scars and 
canopy moisture content (Gerard et al., 2003).  
 
Study Area 
This study takes place within the Hitching Post pasture, a 3.24 km2 fenced parcel within the U.S. Sheep 
Experiment Station (USSES) located in Clark County, Idaho at an elevation of approximately 1800 m 
(Fig. 1). Average annual precipitation ranges from 250-530 mm with up to seventy percent falling as 
snow (Seefeldt, 2005). Average annual temperatures are 5-6 °C, with a 70 to 90 day frost-free season. The 
majority of the pasture has gradual slopes (0-1.5 %), with the greatest slope being approximately 9 % 
excluding rocky outcrops. The pasture is a sagebrush steppe ecosystem characterized by extreme seasonal 
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variability and a co-dominance of Artemisia with several grass species (West and Young, 2000). The 
Hitching Post pasture has two primary subspecies of sagebrush (Artemisia ssp.): mountain big (A. 
tridentata ssp. vaseyana), and threetip (A. tripartita ssp. tripartita). Mountain big sagebrush is a more 
mesic subspecies located between 1525 m and 3050 m elevation (Wright and Bailey, 1982). It is between 
0.73 - 1.22 m tall in precipitation zones varying between 355 - 510 mm per year. Threetip sagebrush is 
typically found below 1830 m in dry soils receiving between 255 - 400 mm of precipitation per year 
(Wright and Bailey, 1982). This subspecies is a weak sprouter (grows from the meristem). Other shrub 
species within the pasture are antelope bitterbrush (Purshia tridentata), green rabbitbrush 
(Chrysothamnus viscidiflorus), and horsebrush (Tetradymia canescens). There are a few small patches of 
the exotic forbs leafy spurge (Euphorbia esula) and spotted knapweed (Centaurea maculosa). The exotic 
annual, cheatgrass (Bromus tectorum), occurs as a small component (<1%) of the overall plant cover. 
Lupine (Lupinus argenteus) is the most plentiful forb in the pasture, ranging in height from 20 cm to 1 m; 
graminoids present are thickspike wheatgrass (Elymus lanceolatus), bluebunch wheatgrass 
(Pseudoroegneria spicata), and plains reedgrass (Calamogrostis montanensis Scribn.). Soils are mixed, 
fine-loamy, frigid Calcic Argixerolls derived from residuum, alluvium, or windblown loess (Seefeldt, 
2005; NRCS, 1995). Sheep and horses have grazed this pasture for the last decade, but grazing has not 
occurred for the past 2.5 years prior to the burn. 
 
Table 1. Remote sensing indices that were explored to find the best burn/no burn algorithm and the best burn 
severity algorithm. 

Remote 
Sensing Index Algorithm Sensor References 

SAVI (1+L)(NIR-Red) 
   NIR+Red+L  
 
(L = 0.5) 

Landsat:  
NIR = band 4 
Red = band 3 
 
SPOT:  
NIR = band 3 
Red = band 2 
 

Huete, 1988 

MSAVI 

2                                    

)RedNIR(*82)1)NIR(*2(1(NIR)*2 −−+−+

 
 

Landsat:  
NIR = band 4 
Red = band 3 
 
SPOT:  
NIR = band 3 
Red = band 2 

Qi et al., 1994 

pNDSWIR 
 
 
 
NDSWIR 

NIR – SWIR 
NIR + SWIR 
 
 
Pre-fire NDSWIR –  
Post-fire NDSWIR 
 

Landsat: 
NIR = band 4 
SWIR = band 5 
 
SPOT:  
NIR = band 3  
SWIR = band 4 

 
 
 
 
Gerard et al., 2003 

NBR 
 
 
dNBR 

NIR – SWIR 
NIR + SWIR 
 
Pre-fire NBR –Post-fire NBR 

Landsat:  
NIR = band 4  
SWIR = Band 7 
 

Lopez Garcia and 
Caselles, 1991; 
Key and Benson, 
1999b; 2004a 

RdNBR Pre-fireNBR–Post-fireNBR 
         

Landsat:  
NIR = band 4 
SWIR = band 7 

Miller and Thode, 
in revision prefireNBR
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This study area was chosen because it offered an opportunity to participate in a prescribed burn, allowed a 
high degree of control for pre- and post-fire field sampling, and because it contained a sagebrush steppe 
rangeland environment. The prescribed burn occurred September [14 and 15], 2005, and is described in 
more detail below. 

    

Remote 
Sensing Index Algorithm Sensor References 

Modified 
NDVI 
 
rModNDVI 

SWIR – Red 
SWIR + Red 
 
Pre-fireModNDVI–Post-fireModNDVI 
                √Pre-fireModNDVI 

SPOT:  
Red = band 2 
SWIR = band 4 

None 

 
METHODS 
Introduction 
This study utilizes pre- and post-fire field-based sampling as training sites for establishing locations of 
sample sites along with a description of the vegetation, bareground, and burn severity observed at each 
site. The pre-fire field assessments were collected by two people together between mid-June and early 
August 2005, and post-fire sampling followed the September 2005 prescribed burn for approximately 1.5 
months.  Burn severity is assessed using a combination of field and satellite data that evaluate the 
vegetation lost due to fire. These field vegetation estimates are compared with remote sensing data with 
the goal to delineate areas of high and low amounts of live vegetation cover post-fire. The parameters we 
use to determine burn severity in the field are: 0% = no area burned, <50% = <50% area burned, >50% = 
>50% area burned, and 100% = all area burned.  
 
Prior to the vegetation surveys, large-scale (~8000 m2) vegetation variability and fuel load estimates were 
performed across the pasture to design a sampling regime which adequately sampled across all fuel loads. 
Fuel loads were sampled to get an accurate representation of pre-fire vegetation communities. Because 
the vegetation communities (i.e. fuel load and species type) were similar on all soils, elevations, and 
aspects in the pasture, further stratification of sampling was not necessary. Upon walking the entire 
pasture, three main types of vegetation cover (fuel load) were observed. There were patches of grass only 
(with bareground); patches of small, sparse shrubs (with grass and forbs); and patches of tall, dense 
shrubs (with grass and forbs). These qualitative observations are based on the work of the BLM’s 
Determining Fuel Models method, which ocularly estimates the vegetation across a shrubland landscape 
in tons/acre (Anderson, 1982). Though biomass measurements are never made, this technique estimates 
biomass visually based primarily on grass and shrub (size and density) cover in rangelands. According to 
a USDA fuel load guidelines study, Anderson (1982) found that grass-only parts of shrublands equate to 
less than 1 ton/acre, and their shrublands averaged 4 tons/acre. Our fuel load categories correspond with 
Anderson’s observations: grass-only patches are considered very low fuel load while high fuel load is 
characterized by tall, dense shrub areas. A transitional category of medium was formed, which is small to 
medium-sized shrubs with grass and forbs. During this process, 78 polygons ~8267 m2 each (with 
consistent fuel loads) were recorded with a Trimble GeoXT GPS receiver (+/- 0.7m @ 95% CI (Serr, 
unpublished)) and labeled with their respective fuel loads. These polygons are hereafter named ‘large 
scale, homogenous fuel load polygons’. 
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Figure 1.  Location of the Hitching Post pasture study area in southeastern Idaho. 

 
After the large-scale fuel load estimates were performed, two different methods for fine scale sampling of 
the vegetation were performed. These include: 1) 60 m x 60 m plot ocular estimates of vegetation and 
bareground percent cover, and 2) 20 m x 40 m plot point frame measurements. The ocular method is used 
for quickly collecting percent cover of the upper-most canopy and comparing the results with remote 
sensing data. Percent cover of shrub, grass, forb, litter, rock, and bareground are estimated over a 60 m x 
60 m plot, after thoroughly walking the area. The point frame method takes longer in the field; however, 
it provides a more accurate representation of true ground cover (Floyd and Anderson, 1982; Floyd and 
Anderson, 1987). The point frame method was used because: 1) it serves as a complimentary method for 
coupling ground data with remote sensing data; 2) it provides fine resolution field data roughly equivalent 
to the resolution of the SPOT imagery (10 m); and 3) the near-nadir view while sampling the vegetation 
emulates the view of a satellite.  

 
Pre-Field Operations 
ESRI’s ArcPad, (6.0.2, 1990-2000), a mobile GIS software installed on the GPS unit allowed seamless 
data collection between GPS locations and field attributes. ArcPad Application Builder in ArcPad Studio 
(6.0.0.24U, 2002) was used to customize an attributed form associated with each shapefile collected in the 
field. Pre-established categorical groups were used to assess percent cover (Table 2) for each cover class 
(shrub, grass, litter, bareground, rock, and forb) (McMahan et al., 2003).  
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Table 2. Categorical groups of percent cover. 
Percent Cover Cover Class 
None 0 
1-5% 1 
6-15% 2 
15-25% 3 
26-35% 4 
36-50% 5 
51-75% 6 
>75% 7 

Field-Based Ocular Estimates 
The ocular estimate method used was developed by the ISU GIS Training and Research Center (TReC) 
and modified by McMahan et al. (2003) for semiarid rangelands in southeastern Idaho. Plots are 
approximately 60 m x 60 m in order to encompass approximately four Landsat pixels (30 m x 30 m). This 
method has been used by the TReC as a cover method for remote sensing interpretation/classification 
since 1999 (McMahan et al., 2003; Russell and Weber, 2003; and Weber and McMahan, 2003). Two 
hundred random sampling locations were generated using the Raster Drilldown tool (GIS TReC, 2006) 
across the pasture that met the following criteria: 1) >20m from all bulldozer-created black-lines (for 
enclosure of the prescribed fire), and 2) >20m from all roads to ensure roads were not within plots, to 
mitigate ‘road effects’, and to eliminate sampling bias. Six additional plots were created in order to have 
adequate replication within unburned areas and fuel load classes. These 60 m x 60 m ocular estimate plots 
were located within all fuel load categories and adequate (≥ 30) representation was insured for each 
category. In total, 206 ocular plots were navigated to using the GPS receiver. Each person started in the 
plot center and paced 30 m in opposite directions to the plot boundary. After walking the plot 
circumference, they proceeded to walk in a spiral pattern within 3-4 m of the previous track back towards 
the plot center while observing plot attributes (Table 3). At the center, each plot attribute was discussed 
until agreed upon. Percent cover for six categorical categories (shrub, grass, forb, litter, rock, and 
bareground) were estimated. Each plot center location was recorded using the GPS receiver, and here 
sagebrush was described by its average height and diameter using calipers (+/-1cm) to approximate the 
age of each plant (Perryman and Olson, 2000). Four photo points were taken as well from the plot center, 
one in each cardinal direction. This method also includes identifying the dominant weed and estimating 
its abundance (percent cover). Fuel load (tons per acre) was estimated following BLM protocols 
(described above) over the 60 m x 60 m plot. Homogeneity of vegetation cover was assessed across each 
plot, and a plot was considered homogeneous if vegetation type and percent canopy cover was consistent 
at visually-based 10 m2 increments across an entire plot. Therefore, if a 10 m2 portion of the plot was 
different than the remaining areas within a plot, then the plot as a whole was not considered homogenous.  
 
Field-Based Point Frame Measurements 
Because the study uses 10 m SPOT imagery, a finer scale field method (versus the 60 m plot estimates) 
was sought for comparison with the imagery. Thus we chose point frame measurements made over a 20 x 
40 m plot size which can encompass eight SPOT pixels. This plot size allows a benefit over a smaller plot 
size because there are more pixels in the plot tolerating some georegistration error. Though ocular 
estimates are time efficient and easy, they can be less precise (than point or line methods) and inherently 
subjective. In addition, the somewhat coarse and unequal  (~ 14%) categorical increments (Table 2) used 
can be difficult to relate to absolute remote sensing measurements. It is important to determine a field 
method that is applicable to remote sensing in rangelands, and furthermore that is reliable, user-friendly, 
and lacks user bias. Because the field data are an integral part of remote sensing models, it must be 
accurate enough relative to the imagery resolution. It is important to note; however, that because exact 
vegetation coverages are unknown (using plots due to the time constraints of collecting cover across the 
whole study area), it is difficult to compare coverage techniques with absolute certainty.   
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Table 3. Field attributes for all ocular estimates collected with an  ArcPad customized form within a Trimble 
GeoXT GPS receiver. 

Attributes 
Plot ID and its center point location 
Date 
Percent cover of: dominant shrub 
Percent cover of: other shrubs present 
Average shrub height (Low: <51cm, Medium: 51-
100cm, Tall: >100cm) 
Percent cover of: grass 
Percent cover of: litter 
Percent cover of: bareground 
Percent cover of: rock 
Percent cover of: forb 
Percent cover of: dominant weed 
Fuel load (Low: Grass only, Medium: small to medium 
sized shrubs, High: tall, dense shrubs) 
Sage diameter measured once in each cardinal direction 

Photos taken in 4 cardinal directions & their ID # 
Presence of microbiotic crust 
Observed vegetation type (GAP classification category 
which was ‘Sagebrush Grassland’, defined by the Idaho 
GAP 2 data set (2000), 
Litter type (oxidized gray or biologically brown) 
Plot homogeneity (as described in Field Methods) 

 
The point frame technique, designed by Floyd and Anderson (1982) is a well accepted, accurate sampling 
method used to visually determine vegetation percent cover (Floyd and Anderson, 1987; Inouye, 2002). 
Designed in sagebrush steppe ecosystems, this frame establishes a dot grid overlooking underlying 
vegetation and bareground. Observers view vegetation from a near-nadir standing position and record the 
cover types that are beneath 36 intercepted points (cross-hairs). A number of point frames are collected 
within each pre-defined plot size; the sampling intensity necessary to capture variability within each plot 
was determined using a sample effort curve (Fig. 2). Based on sample effort curves from all cover 
categories, a maximum of 15 frames of point data were needed at each plot to ensure adequate 
representation of ground cover in this study area. The location of the 15 frames within each plot were 
selected at 7 m intervals across the 40 m-axis of the plot, then placed at 3 m, 5 m, and 7 m perpendicular 
to each interval along the 20 m-axis (Fig. 3). The 20 x 40 m plot boundary was established with a field 
tape and recorded with the GPS. In addition to the ground cover class identified (at each cross-hair) in the 
frame, fuel load (tons per acre) was estimated following BLM protocols (same as above), and 
homogeneity was assessed at the 20 m x 40 m scale. Each plot’s attributes (Table 4) were entered into the 
GPS.  
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Figure 2. A sample effort curve is used to determine the necessary sampling intensity from one 20 x 40 m plot. 
Above, the cumulated mean (boxes) and standard deviation (diamonds) of shrub and grass cover for the plot 
level out around ten, indicating the need for approximately ten frames to estimate shrub and grass cover. 
. 

 
 Figure 3. Approximate location of 15 point frames within each 20 x 40 m plot. Dashed lines indicate potential 
SPOT pixel 10 x 10 m placement. 
 
Table 4. Point frame plot field attributes collected with Trimble GeoXT GPS receiver and ArcPad customized 
form. 

Attributes 
Plot ID and its boundary location 
Fuel load (3 categories) or Burn Severity 
Plot homogeneity (as described in Field Methods) 

 
Field Methods--Sampling Stages 
Pre-fire Sampling 
Pre-fire ground cover sampling was performed primarily for hypothesis #2 to determine correlation 
between pre-fire fuel loads and burn severity levels. During pre-fire sampling, the ocular estimate method 
was performed at 206 random plots across the pasture (Fig. 4; points). In conjunction with the ocular 
estimates, point frame data (Fig. 4; rectangles) were collected at 45 of the 206 sample sites. These 45 
plots were centered within the ocular plots that were determined homogenous. In order to ensure 
replication, 20 additional stratified random point frame plots were set up within the previously established 
large scale, homogenous fuel load polygons. Each of the three fuel load categories were represented by at 
least four, 20 m x 40 m point frame plots and four plots were established within the proposed unburned 
area for replication. 
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Figure 4.  Pre- and post-fire sampling plot locations, prescribed fire boundaries, and bulldozer-created 
fireline. 
 
Prescribed Fire 
The prescribed fire was performed September [14 and 15], 2005 by Targhee Fire, a contract crew through 
the USSES. The fire crews burned most of the northern 4/5 of the pasture (approximately 2.82 km2; Fig. 
4) consistently. They ignited vegetation in the southeast and northwest corners simultaneously while 
walking the dozerline with a drip torch towards the southwest corner. These two fires came together in the 
southwest corner and progressively moved toward the northeast with the wind. Using a hand-held 
anemometer, winds were observed around 20 m/sec throughout most of this northern burn. Nine strip 
burning/spot fires were ignited in the southern portion of the pasture to ensure replication (south of the 
middle bulldozer line; Fig. 4). The prescribed fire in September burned approximately 85% of the pasture 
area including 173 of the sampling sites.   
 
Post-Fire Sampling 
Post-fire field surveys, performed within 1.5 months after the fire, were intended to provide field 
validation of burn severity levels. All of the pre-fire sampling sites were re-sampled after the fire. The 
same field methods as pre-fire sampling (ocular estimates and point frame measurements) were repeated 
at the same scales and within 3-5 m of the original locations (by navigating with the GPS unit). Data were 
collected consistent to the pre-fire methods, except fuel load attributes and sagebrush age data. In 
addition, a burn severity rating (unburned, low, moderate, and high) was assigned to each ocular and point 
frame plot. This project assessed burn severity with a modified ocular method based on combining the 
works of the US Forest Service field methods (USDA FS, 2001), the US Park Service field methods 
(USDI NPS, 2003), and Key and Benson’s (Key and Benson, 1999a; 2004b) composite burn index (CBI). 
Each of these post-fire field methods incorporates qualitative and quantitative measurements to detect and 
categorize burn severity; we incorporated and modified the three methods above according to the burn 
conditions on our study area in the context of a semiarid rangeland site. Since most of the vegetation and 
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organic soil material was consumed by the fire the burn severity assessment became solely qualitative; no 
attribute was physically measured. However, attributes such as litter condition, shrub condition, surface 
rock (USDA FS), organic substrate, and vegetation (USDI NPS) were incorporated from the USDA and 
USDI burn severity assessments. Key and Benson’s (1999a; 2004b) CBI places a ≈50% change in the 
herb/low shrub/tall shrub strata into the moderate burn severity category. The study area predominantly 
fits into Key and Benson’s shrub strata, so we incorporated this ≈50% change burn severity category. 
 
After the burn, we walked the entire pasture to assess the burn severity variability using the attributes that 
were applicable to the prescribed burn. For instance, we did not use any tree measurements (there were no 
trees) or measurements of standing litter (all burned areas had standing burned stumps). In most instances, 
the fire either burned all vegetation (except stumps) or none; there was a very small amount of 
incompletely burned vegetation.  
 
Severity at each plot was assessed based on the percent cover of consumed, above-ground vegetation and 
litter versus the amount of bareground and rock, as a satellite would interpret each plot’s reflectance. If 
there were patches of partly consumed vegetation within the plot its percent cover was assessed and a 
severity category was assigned. Each study plot was classified with an ocular burn severity rating (0-3) 
based on the amount of remaining above-ground live vegetation within the plot: 0 = Unburned, no 
vegetation change; 1 = <50% burned, little above ground consumption; 2 = >50% burned, most of above 
ground vegetation was consumed; and 3 = 100% burned, all above-ground vegetation mortality. Of 271 
total plots, only 13 were <50% burned. The corresponding remote sensing values were not significantly 
different than the unburned or moderate severity classes and there were not enough plots for validation. 
These data were incorporated and analyzed with the >50% category (2) (Table 5) because the sample size 
was too low to have its own class and subsequently considered moderate severity or ‘incompletely 
burned’. 

Table 5. Description of burn severity categories based on an ocular estimate. 

Burn Severity Value Category Definition 

Unburned 1 Vegetation is in same condition as pre-fire 
Moderate 2 Vegetation was burned within the plot 
High 3 100% vegetation was burned within plot 

 
Post-Field Operations  
Differential correction/post processing was performed to minimize clock (satellite and receiver), 
atmospheric, and ephemeris errors of the GPS data. Trimble’s GPS Pathfinder Office 3.10 was used for 
differential correction and shape correct. The real time CORS stations located in Mammoth, WY and at 
the Idaho National Laboratory (INL) (depending on which was available) were preferred for the 
differential correction. However, when necessary, CORS stations located further away (i.e. Pocatello, ID) 
were used. 

 
Remote Sensing Methods 
Image Acquisition 
Landsat ETM+ and SPOT 5 imagery were chosen for this work due to their reasonable cost, spatial and 
spectral resolution, and because their data are continuously collected. Both Landsat and SPOT satellite 
images were acquired within one month after the prescribed fire. Landsat has three visible (blue, green, 
red), one near-infrared (NIR), and two shortwave infrared (SWIR) bands (1.65 µm and 2.21 µm) at 28.5 
m spatial resolution. While Landsat provides more spectral resolution (especially in the SWIR where burn 
severity is likely to be distinguishable), the spatial resolution is lower than SPOT-5 and its long-term 
future data availability is questionable. SPOT-5 has three multispectral bands (green, red, and NIR) at 10 
m spatial resolution and one SWIR band (~1.66 µm) at 20 m spatial resolution. Because the SPOT SWIR 
band has a spatial resolution of 20 m and the visible and NIR data have a spatial resolution of 10 m, the 
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SWIR data were resampled to 10 m and analyzed together with the visible and NIR data. A total of 2 
Landsat (July 4 and October 24, 2005) and 2 SPOT (August 27 and September 28, 2005) images were 
acquired (Table 6): all images were chosen as close to the prescribed burn (September [14 and 15], 2005) 
as possible with the smallest percentage of cloud cover. 
 
Table 6. Dates and location of SPOT and Landsat imagery. 

Imagery Date Scene ID/Path Row 
SPOT 5 Pre-fire 27-Aug-05 547-260 

SPOT 5 Post-fire 28-Sep-05 547-260 

Landsat ETM+ Pre-fire 4-Jul-05 39/29 

 Landsat ETM+ Post-fire 24-Oct-05 39/29 
 
Overview of Image Processing 
Several remote sensing methods are explored and compared in this study using Landsat and SPOT 
imagery. In order to test the hypothesis that burn severity can be predicted with remote sensing data, ten 
remote sensing indices are explored and compared through accuracy assessments. The indices include: 1) 
an original Landsat dNBR and one relative dNBR using pre- and post-burn imagery; 2) one relative 
modified NDVI using pre- and post-fire imagery; 3) one original normalized difference shortwave-
infrared index (NDSWIR), and two modified NDSWIR using multi-imagery and post-fire imagery; 4) 
two SAVIs using an adjustment factor of 0.5 with both the Landsat and SPOT post-fire images; and 5) 
two MSAVIs using post-fire Landsat and post-fire SPOT imagery.  
 
Using homogenous point frame study plots (n=36) we investigated the differences in the pre- and post-
fire SPOT and Landsat images (Figures 5 and 6). We averaged the reflectance values from the 36 plots 
for each of the pre- and post-fire images and compared the differences. The SPOT data had small changes 
in reflectance values between the pre-and post-fire images. The red reflectance decreased after the fire 
approximately 0.84% and the NIR reflectance increased approximately 1.8% after the fire. The green 
reflectance increased 1.6% and the SWIR reflectance increased approximately 0.81%. In the Landsat data 
the NIR decreased 3% and the SWIR (2.21 µm) reflectance increased 5.5% after the fire. Blue, green, and 
red reflectances decreased less than 1% and the SWIR (1.66 µm) increased 0.85%.  
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Figure 5.  Pre-fire and post-fire SPOT imagery is used to demonstrate homogenous point frame plot (n = 36) 
reflectance averages.  
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Interpretation of the reflectance values from the homogeneous plots indicates that the SPOT data 
demonstrate a smaller amount of change between pre- and post-fire in comparison to the Landsat data. 
The post-fire Landsat data was collected approximately one month after the fire while the SPOT data was 
collected  less than two weeks after the fire. The Landsat post-fire response (a decrease in NIR reflectance 
and an increase in SWIR reflectance) is consistent with a loss of vegetation and an increase in soil 
exposure. On the other hand, the SPOT green and NIR reflectances increased, albeit less than 2%. The 
response of the SPOT data in the red and SWIR bands is similar to that of corresponding bands in the 
Landsat data. Regardless of the green and NIR increases, we chose to analyze the SPOT data and 
compare results with Landsat.  
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Figure 6. Pre-fire and post-fire Landsat imagery is used to demonstrate homogenous point frame plot (n=32) 
reflectance averages. 
 
Because resource management decisions are made with maps it is important to know their quality of 
information. Accuracy assessment is conducted to identify how well the remotely sensed data represents 
earth’s features and provides a measure of quality that remotely sensed data describes of land cover 
(Congalton and Green, 1999). Validation of the remote sensing burn severity was performed following 
traditional accuracy assessment techniques by placing field data (reference data) and remote sensing data 
(classified data) into an error matrix (Congalton and Green, 1999). The standard error matrix reports 
users, producer’s, and overall accuracies, as well as a kappa statistic (KHAT). The overall accuracy, 
reported as the accuracy assessment statistic, is the sum of the correctly classified pixels divided by the 
total number of pixels in the error matrix (see below; Congalton and Green, 1999). Producer’s and users 
accuracies are a better representation of accuracy because they represent the individual category 
accuracies, and are not biased by the overall sample size. The producer’s accuracy reports the percentage 
of pixels which accurately represent the landscape (on the map). The users accuracy represents the 
chances of, when going to an area on the ground, that the map will be classified correctly. The KHAT is a 
measure of how well the remotely sensed data agree with the validation data and provides insight into 
how much better the classification is than a random classification (Congalton and Green, 1999).  
 
A pairwise test of significance (Congalton and Green, 1999; equation 4) was run for the matrices that had 
highest accuracies as well as for those which shared similar overall accuracies. This test is a Kappa 
analysis that determines if two error matrices are significantly different by comparing their KHAT 
statistics. 
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 Where:  K1 and K2 = Kappa statistic for error matrix 1 and 2 
   var(K1) and var(K2) = estimates of variance for matrix 1 and 2  
 
 
Pre-processing of Imagery  
Radiometric Correction 
All imagery were processed to at-satellite reflectance using ENVI software (RSI, 2005) to reduce 
between-scene variability. This was an important step since multi-temporal imagery was used. Both 
Landsat images were processed using ENVI’s Landsat TM Calibration Utility; the SPOT images were 
processed using band math in ENVI with algorithms (4) (SPOT, 2005) and (5) (Landsat 7, 2006) as 
follows: 
 
 Radiance =           Digital Number           (5) 
     Absolute Calibration Gain 
 Reflectance =             Π * radiance * sun-earth distance2               (6) 

     solar equivalent irradiance * cos (solar angle) 
 

 Where:   Radiance = spectral radiance at the sensor's aperture  
   Digital Number = the digital number of each pixel ranging    
 from 0-255 

  Absolute Calibration Gain = the sensor processing procedure   
 to maximize the instrument's radiometric resolution without   
 saturating the detectors; each band’s gain is provided by the    image 
metadata 
  Sun-Earth Distance = Earth-Sun distance in astronomical    

 units from nautical handbook  
  Solar Equivalent Irradiance = mean solar exoatmospheric   
 irradiances in watts/(meter squared * μm) provided by SPOT    Image 
Corp. for each band 
  Solar Angle = solar zenith angle in degrees 
 

On May 31, 2003 the Landsat ETM+ scan line corrector (SLC) which compensates for forward motion of 
the spacecraft failed (Howard and Lacasse, 2004). This mechanical failure cannot be repaired, thus, 
portions of the ground are collected redundantly or missed entirely. While a linear transform of the data 
from another scene date can be used to estimate the missing DN values (Howard and Lacasse, 2004) this 
was not necessary because our study area was not located in an area affected by the SLC failure.  
 
Geometric Correction 
Image rectification was performed using ground control points (GCPs) and the Image to Map Registration 
tool in ENVI. Image rectification was performed after the remote sensing indices (see below) in order to 
reduce error during resampling.  Spatial interpolation was performed using GCPs selected from the index 
images and matched with the primary ‘Dozerline’ GPS GCP file. This GPS file was collected around the 
periphery of the controlled burn, which could easily be matched with the burn periphery in the index 
images. Where necessary, GCPs from roads and pasture corners were also used. Both the GCP files and 
index image files were in a Transverse Mercator projection (SPOT = IDTM; Landsat = UTM) and the 
GCPs were located spatially throughout the study area. Each image was then subset to the study area. 
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Resampling during the image rectification process was implemented using the nearest neighbor first order 
polynomial interpolation. The output pixel size was set to the same size as the input image file. This 
method was chosen because it assigns the closest brightness value to the output pixel, rather than an 
average of the surrounding pixels (Jensen, 1996; Lillesand et al., 2004), therefore maximizing spectral 
and spatial integrity of the data. The resulting Root Mean Square Error (RMSE) was less than ½ pixel for 
both the Landsat and SPOT imagery (Table 7) during the image rectification process. 
 

Table 7. Root Mean Square Error (RMSE) of the Landsat and SPOT data. 
 

Imagery RMSE Distance off (m) 
Landsat 0.2621 7.9 
SPOT 0.3489 3.5 

 
Remote Sensing Indices 
Several remote sensing indices were implemented (Table 1) including single image and multi-image 
manipulation. A burn versus no burn algorithm was first sought to differentiate the areas that were burned 
from the areas that were not burned. Subsequently, an algorithm was sought to determine areas of 
differing levels of burn severity. There is a possibility of introducing inherent error when comparing 
multi-temporal datasets and using them in band ratios due to spatial mis-interpolation, therefore; single 
image segmentation was performed to reduce this occurrence. Multi-date indices were performed in order 
to show change detection from pre-burn conditions to post-burn conditions. This temporal image 
differencing technique uses the same bands from each image; the same algorithm is applied twice for each 
image; and the post-fire result is subtracted from the pre-fire result. Algorithms compared with Landsat 
imagery were: soil adjusted vegetation index (SAVI) and modified soil adjusted vegetation index 
(MSAVI) single date indices, and differenced normalized burn ratio (dNBR), normalized difference 
SWIR (NDSWIR), and relative dNBR multi-date images. Algorithms compared with SPOT imagery 
were: SAVI, MSAVI, and post-fire NDSWIR single date indices, and relative modified normalized 
difference vegetation index (NDVI) and NDSWIR multi-date indices.  
 
Single Date Indices 
Single date indices represent change by using only the post-fire satellite image. For initial assessment of 
burn severity, it is best to use imagery as close after the fire date as possible. The Landsat and SPOT post-
fire images were used to produce three remote sensing indices: SAVI, MSAVI, and NDSWIR. These 
single date indices were applied to determine burned from unburned areas, and then assessed to 
differentiate burn severity. 
 
The SAVI remote sensing index was appropriate to try in our rangeland application with both the Landsat 
and SPOT post-fire images because of the inherent amount of high bareground after a fire. Huete (1988) 
suggests that a soil adjustment factor of 0.5 can be used across different ecosystem types with differing 
biomass amounts. The SAVI output values range between 0-1: values near zero represent less vegetation 
(high burn severity) and increasing values represent more vegetation (low burn severity or unburned 
vegetation).  
 
The MSAVI was used (with Landsat and SPOT post-fire images) because it has increased sensitivity to 
vegetation where total vegetation cover is low (i.e. after a fire) (Qi et al., 1994). The MSAVI output 
values range between -1 to 1. It is expected that this algorithm is successful at discriminating vegetation 
associated with unburned and moderate severity burns because of its ability to minimize soil’s high 
reflectance. 
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We chose to assess the accuracy of the post-fire NDSWIR (pNDSWIR), described in better detail below. 
This index uses SPOT NIR and SWIR bands and no visible bands; therefore, potentially less susceptible 
to atmospheric interferences.  
 
Multi-Date Indices 
Multi-image manipulation was first performed to identify burned from unburned areas and then to 
differentiate burn severity levels within a burn perimeter. This process detects vegetation change from 
pre-burn to post-burn conditions using two images. Typically multi-date indices require an algorithm to 
be applied to both pre-fire and post-fire images before the final algorithm is performed (i.e. differenced). 
Areas of no change have values equal to, or close to zero. For instance, a pre- and post-NBR is performed 
and then differenced resulting with the dNBR (Table 1). As established, Landsat bands 4 and 7 are 
applied in the dNBR with values typically ranging from negative 1 to positive 1; negative values represent 
increased vegetation productivity in the post-fire scene or clouds in the pre-fire scene, positive values 
represent fire effects or clouds in the post-fire scene. We applied a dNBR to the Landsat data. 
 
We also used Landsat data for a relative differenced NBR (RdNBR; Miller and Thode, in revision). 
RdNBR values range from -1 to 1; negative values represent increased vegetation (unburned or low 
severity), and positive values represent a decrease in vegetation (high severity) after the fire. The relative 
dNBR was not used with SPOT data because the pre-fire NBR results have negative values and this index 
requires the division of the square root of the pre-fire NBR results. Therefore because the pre-fire NBR 
has negative values it cannot be performed without scaling the pre-fire data to positive values. The aim of 
this research was to test indices without additional need of processing (e.g. rescaling). 
 
The NDSWIR results are compared with the results of the post-fire pNDSWIR (above). Because spectral 
proximity of the Landsat band 5 (1.65 µm) is similar to SPOT’s SWIR (1.66µm), the NDSWIR index 
(Gerard et al., 2003) was modified to include the Landsat imagery. It was expected that the Landsat and 
SPOT NDSWIR indices would have similar results because of the SWIR bands’ spectral proximity. 
However, because the SPOT spatial resolution is higher than the Landsat spatial resolution, it was 
expected that the SPOT NDSWIR may provide an increased level of delineation.  
 
To incorporate SPOT’s SWIR band, the NDVI was modified by replacing the NIR with the SWIR band 
which was previously found useful for fire scar detection (Gerard et al, 2003). We performed the 
modifiedNDVI (Table 1) with the pre-fire and post-fire SPOT images in order to produce a relative 
modified NDVI index (rModNDVI).  
 
Accuracy assessment (described below) was used to provide an assessment of how well the remotely 
sensed indices corresponded with the field data. Accuracy results were then compared between the 10 
remote sensing indices.  
 
Accuracy Assessment 
Relating Remote Sensing Indices to Field Data 
Training data were used to relate remote sensing index values to field data. Using field plot data and the 
Spatial Analyst function in ArcMap 9.1 (Extract Values to Points; ESRI, 2005) burn severity index values 
were extrapolated for each training plot. The Extract Values to Points function acquires the pixel value 
under the plot center point. The Interpolate Values at Point Locations option was checked in order to 
account for the surrounding plot size. The value of the point is calculated using the adjacent cells with a 
bilinear interpolation method (ESRI, 2005). Burn severity index values were separated into burn severity 
classes by first placing all plot values into their respective burn severity classes as determined in the field. 
Then the minimum, maximum, and mean index values of each class were determined. Overlapping index 
values were separated by splitting the difference between the maximum of one class with the minimum of 
the next class. Likewise, if there was a gap between burn severity class data values, then a break was 
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determined by splitting the difference between the maximum of one class with the minimum of the next 
class. A total of 119 plots were used for the training including both ocular and point frame plot index 
values. High burn severity had 89 plots; moderate burn severity (‘incompletely burned’) had 16 plots; and 
the unburned class had 14 plots. To encompass the variability across the study area, training plots were 
randomly selected within each burn severity class and the same training plots were used within each burn 
severity class for each index. A categorical scatterplot of burn severity classes and remote sensing index 
values was created to show the breaks and overlap in the remote sensing data (Fig. 7). 
 
Validation  
Fifty plots were reserved for the validation of each class (n=150), as recommended by Jensen (1996) 
(Table 8). No training data were used in the validation. An error matrix was created to compare the field 
validation plots with their corresponding index values. Overall accuracy, as well as the users and 
producer’s accuracy are presented in the error matrix table (Table 9). Error matrices for all ten remote 
sensing indices were established and Kappa analysis was performed. A pairwise test of significance was 
run for the matrices that had highest accuracies as well as for those which shared similar overall 
accuracies.  
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Figure 7. Example of a categorical scatterplot of burn severity classes versus the Landsat MSAVI index. 
Dashes indicate mean index values of the burn severity class. 
 
Table 8. Number of training plots and validation plots when assessing all remote sensing indices. 
Burn Severity Value Category # of Training Plots # of Validation Plots 
Unburned 1 14 50 
Moderate 2 16 50 
High 3 89 50 

 
RESULTS 
The remote sensing indices comparing burned with unburned areas had better overall, users, and 
producer’s accuracies than indices comparing burn severities (Tables 10, 12 - 14). Based on a 
homoscedastic, two-tail t-Test comparing the overall accuracies of 10 single date and 10 multi-date 
indices (with SPOT and Landsat data), the single date and multi-date indices do not differ in mean overall 
accuracy (P = 0.4073).  
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Table 9. An example of an error matrix table with Kappa results: the Landsat relative dNBR burn severity 
index. 

  Unburned Moderate High Total 
Unburned 43 1 0 44
Moderate 6 28 12 46
High 1 21 38 60
Total 50 50 50 150
Overall Accuracy 73%    
Users Accuracy 86% 56% 76%  
Producer's Accuracy 98% 61% 63%  
KHAT 0.49    
Variance 0.0033    
Z Statistic 8.4339       

 
Table 10. Burned versus unburned remote sensing index accuracies and kappa statistics using SPOT 5 
imagery. 

Accuracy Type dNDSWIR pNDSWIR RelModNDVI MSAVI SAVI 
Overall Accuracy 65% 96% 94% 95% 100% 
Producer's 
Unburned 49% 96% 94% 98% 100% 

Users Unburned 82% 92% 88% 86% 100% 

Producer's Burned 86% 96% 94% 93% 100% 

Users Burned 57% 98% 97% 99% 100% 
KHAT  0.3333 0.9091 0.862944 0.8763 1.0000 
Variance 0.0068 0.0013 0.001955 0.0017 0.0000 
Z Stat 4.0239 25.0211 19.51918 20.6704 * 

 
Burn versus Unburned Index Results 
Landsat remote sensing indices of dNBR, NDSWIR, MSAVI, SAVI, and RdNBR, and SPOT indices of 
dNDSWIR, pNDSWIR, rModNDVI, MSAVI, and SAVI were compared using all field data for accuracy 
assessment. The burned versus unburned indices generated using SPOT imagery (pNDSWIR, 
rModNDVI, and MSAVI), and the Landsat-derived burned versus unburned indices (dNBR, RdNBR, 
MSAVI, and SAVI) had relatively consistent results (~ 95% overall accuracy). Three burned vs. 
unburned SPOT-derived indices (pNDSWIR, MSAVI, and SAVI) have 95% or better overall accuracies 
(Table 10). The highest overall accuracy for the burn vs. unburned indices was the SPOT SAVI at 100% 
(Table 11). The pNDSWIR had an overall accuracy of 96% and had a slightly higher KHAT value than 
the MSAVI results. Upon performing a pairwise test for significance between the pNDSWIR and MSAVI 
SPOT error matrices, the z-statistic (Z = 0.599) reveals that they are not significantly different. Three 
burned vs. unburned Landsat indices (RdNBR, MSAVI, and SAVI) performed nearly equally well at 95% 
overall accuracy (Table 12). Table 12 reports the same values (to the 100th) of KHAT, variance, and z-
statistics for these three indices, indicating they have equal classification accuracies (Congalton and 
Green, 1999); therefore, a pairwise test for significance is not necessary.  The z-statistic values indicate 
that all three indices were significantly better than a random result. The remote sensing indices that 
assessed burned versus unburned areas had better overall, users, and producer’s accuracy results than 
those detecting burn severity. 
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Table 11. An example of an error matrix table: the SPOT SAVI index with 100% overall accuracy. 

    Reference Data   
  Unburned Burned Total 
Remote Unburned 50 0 50 
Sensing Burned 0 100 100 
Data Total 50 100 150 
 Overall   100% 
 Users 100% 100%  
  Producers 100% 100%   

 
Table 12. ‘Burned versus unburned’ remote sensing index accuracies and kappa statistics using Landsat 
ETM+ imagery. 

Accuracy Type dNBR RdNBR NDSWIR MSAVI SAVI 

Overall Accuracy 94% 95% 89% 95% 95% 
Producer's 
Unburned 96% 98% 90% 94% 94% 

Users Unburned 86% 86% 74% 90% 90% 

Producer's Burned 93% 93% 88% 95% 95% 

Users Burned 98% 99% 96% 97% 97% 

KHAT  0.8615 0.8763 0.7329 0.8788 0.8787 

Variance 0.0019 0.0018 0.0036 0.0017 0.0017 

Z Stat 19.3140 20.6704 12.1327 21.1018 21.1017 

 
Table 13. ‘Burn severity’ remote sensing index accuracies and kappa statistics using Landsat ETM+ imagery. 

Accuracy Type dNBR RdNBR NDSWIR MSAVI SAVI 

Overall Accuracy 66% 73% 58% 66% 67% 
Producer’s 
Unburned 96% 98% 90% 94% 94% 

Producer's 
Moderate 50% 61% 37% 50% 52% 

Producer's High 55% 63% 52% 55% 57% 
Users Unburned 86% 86% 74% 90% 90% 
Users Moderate 38% 56% 34% 42% 44% 
Users High 74% 76% 66% 66% 68% 
KHAT  0.4900 0.5900 0.37000 0.4900 0.5100 
Variance 0.0033 0.0030 0.00375 0.0034 0.0033 
Z Stat 8.4339 10.7668 6.04186 8.4456 8.8829 
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Burn Severity Index Results 
The best burn severity index (differentiating unburned, moderate, and high) was the Landsat RdNBR with 
a 73% overall accuracy and users and producer’s accuracies of 56% and 61%, respectively, for the 
moderate category and 76% and 63%, respectively for the high category (Table 13). The best overall 
accuracy for the SPOT burn severity indices was the SAVI index at 71% (Table 14). The pNDSWIR 
index closely followed at 69% and a pairwise test for significance (Z = 0.381) revealed that the two 
matrices are not significantly different. Z statistics indicate that all Landsat and SPOT indices (except the 
dNDSWIR) had significantly better results than if randomly classified.  
 
 Table 14. ‘Burn severity’ remote sensing index accuracies and kappa statistics using SPOT 5 imagery. 

Accuracy Type dNDSWIR rModNDVI pNDSWIR MSAVI SAVI 

Overall Accuracy 65% 67% 69% 67% 71% 
Producer’s 
Unburned 95% 94% 96% 98% 100% 

Producer's 
Moderate 49% 58% 56% 51% 61% 

Producer's High 56% 54% 58% 55% 55% 
Users Unburned 82% 88% 92% 86% 100% 
Users Moderate 40% 28% 40% 38% 38% 
User's High 74% 86% 76% 76% 76% 
KHAT  0.4800 0.5100 0.5400 0.5000 0.5700 

Variance 0.0034 0.003223 0.0032 0.0033 0.0030 

Z Stat 0.0819 8.983351 9.6167 8.6376 10.391 
 
DISCUSSIONS AND CONCLUSIONS 
While studies have been performed in forested ecosystems to reliably detect burn severity with remote 
sensing data, there have not been any established in sagebrush steppe rangelands. This study compares the 
results of 10 remote sensing indices to delineate burned areas and burn severity within rangelands 
immediately following a fire using medium resolution satellite imagery. We used bands in the 
electromagnetic spectrum that correspond with vegetation change after a fire and algorithms sensitive to 
high reflectance of bareground that occurs in rangelands. It is important to note that overall accuracy 
cannot be relied upon completely because it can be biased by large sample sizes of one category versus 
another. For instance, the unburned results have much higher accuracies than the other burn severity 
classes resulting in inflated overall accuracies. As indicated by the highest users and producer’s 
accuracies, the best index for determining burned from unburned areas was the SPOT SAVI (100% users 
and producer’s accuracies for all categories) and the best index for differentiating burn severity within a 
burn was the Landsat RdNBR. 
 
Consistent with Sannier (1999), Epting et al. (2005), and Miller and Yool (2002) accuracies were better 
with fewer burn severity categories. In all cases (except the SPOT dNDSWIR; Tables 10 and 13) the 
unburned versus burned indices had better results than the burn severity indices. We were able to 
successfully determine if an area was burned or not in rangelands using the SPOT pNDSWIR, 
rModNDVI, MSAVI, and SAVI indices and the Landsat dNBR, RdNBR, NDSWIR, MSAVI, and SAVI 
indices.  
 
Our best burn severity index, the Landsat RdNBR (Fig. 8), supported Miller and Thode’s (in revision) 
results. In a mixed ecosystem study area, they concluded that this index performed better at separating 
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high burn severity from other burn severity classes. Our moderate and high burn severity users (56%, 
76%, respectively) and producer’s (61%, 63%, respectively) accuracies for the RdNBR were higher than 
all other indices. These results are important to land managers given that high severity areas require more 
recovery effort. Therefore, there is a need for high producer and user’s accuracies in high severity areas 
(Miller and Thode, in revision). 

 
Figure 8. The relative differenced NBR using Landsat data. 

 
Mapping burn severity patterns at a scale that is coarse enough to capture landscape scales for 
management, yet fine enough to provide the spectral differentiation between burn severity classes is 
needed. Though we did not test spatial variables between Landsat and SPOT, we can compare results of 
indices used on each dataset. For example, in comparing the NDSWIR, the SPOT index provides more 
spatial detail and morphology of the burn categories (Fig. 9). Therefore, even though SPOT didn’t 
provide as high accuracies as the Landsat RdNBR for burn severity levels, its spatial resolution may 
provide other attributes that are useful to land managers. Landsat provides a practical scene size of 170 x 
183 km and costs are reasonable if more than one image needs to be purchased. The results of the Landsat 
RdNBR verify that the Landsat 30 m spatial resolution is high enough to capture the spectral variability 
between burn severity classes in rangelands. However, it is up to the land manager to decide the level of 
detail needed to determine burn severity and thus the scale of fire recovery efforts. 
 
Spatial correlation of ground cover and low RMS error (less than ½ a pixel) reduce the likelihood of 
classification error, however, they do not excuse the possibility of error. Therefore, although error is 
introduced with multitemporal data sets and spatial mis-interpolation occurs, these effects did not 
significantly alter the overall accuracies.  
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Timing of imagery acquisition is important in relation to the fire date and field sampling due to 
phenological vegetation changes. It is difficult to fairly compare remote sensing index results when 
timing of pre-fire and post-fire data sets vary. Naturally, a data set with more time between images will 
translate to more change in the index value. Our Landsat imagery had 112 days between the pre-fire and 
post-fire scenes as well as approximately 1 month between the burn and post-fire image, whereas the 
SPOT imagery had 32 days between imagery and only 4-5 days between the burn and post-fire image. 
Images acquired closest after a fire will likely show more immediate fire effects than images acquired for 
sometime after the fire. The multi-temporal indices between Landsat and SPOT carry different 
relationships. The shorter time gap between SPOT images and their acquisition dates (close to field data 
collection) coupled with the increased spatial resolution explains, in part, why the SPOT NDSWIR 
accuracy is slightly better than the Landsat NDSWIR. The higher sensitivity of the Landsat bands 
explains the higher accuracies for the burn severity levels. Recovery time is different in forests and 
rangelands and often depends on seasonal timing of fire. This should be considered when collecting 
imagery in order to model effects specific to fire.  
 
In the pre-fire images, the SPOT and Landsat reflectance values are essentially the same (where their 
bands overlap). However, in the post-fire images, the SPOT and Landsat data differ. The green and NIR 
bands increase in the SPOT post-fire image (only four days after the fire) while the green and NIR 
Landsat bands decrease. The Landsat data is consistent with an increase in soil exposure and a loss of 
vegetation cover. On the other hand, the SPOT post-fire reflectances are counter-intuitive to an increase 
in soil exposure and a decrease in vegetation cover. These differences are most likely due to sensor 
characteristics (i.e. sensor angle, sun angle, and acquisition time) rather than data collection windows. 
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The SWIR 1.66 µm data is essentially the same between the SPOT and Landsat pre- and post-fire data. 
The fact that Landsat provided a better discrimination of burn severity is likely due to the better spectral 
resolution (e.g. inclusion of the longer-wave SWIR band (band 7, 2.21 µm) and less importantly the blue 
band (band 1)). This result is expected as the longer SWIR bands are notably more sensitive to increased 
soil exposure than the shorter SWIR bands. As previously noted, the value in use of the SPOT data may 
be the higher spatial resolution, allowing for better discrimination of the burn boundaries. 
The magnitudes of the SPOT data are slightly higher than Landsat for both NIR and SWIR bands. This 
may be due to the higher spatial resolution of SWIR and influence of soil. Because SPOT pixels have 
smaller spatial resolution they may be more sensitive to the reflection of bareground, thus their values are 
higher. Higher SPOT values may be also the result of the sensors’ calibration. Most importantly, the 
SPOT results indicate that spectrally, it is less sensitive to post-fire effects such as burn severity than 
Landsat.  
 
Our fire took place in the fall when vegetation was already senesced. Though it was proper to have 
imagery close to the fire dates, reflectance (and changes in reflectance) values were not as high as if the 
fire occurred in a spring or mid-summer fire. For example, because the SPOT SWIR (1.66µm) is sensitive 
to canopy moisture content, the band did not represent as much change because vegetation was dry in 
both pre-fire and post-fire images. Perhaps a study with an earlier fire date would show more definite 
results with the burn severity indices that used the SWIR (1.66µm) band. 
 
An unknown level of bias was introduced in the field measure of burn severity because it was qualitative. 
A quantitative measure of burn severity would provide a more precise and accurate field assessment and 
enable comparison across multiple studies. Such an assessment needs to be established for rangeland 
application that is easy to learn and quick to perform in the field. Other possible errors include the timing 
of field sampling. Due to phenological changes, it is possible that a plot’s fuel load could be mis-labeled. 
The pre-fire sampling was spread out over approximately 6 weeks, starting the end of June through 
August 5th. Craddock and Forsling (1938) determined that grass and forb growth is largely completed by 
July 1st. However we did note growth in lupine (Lupinus argenteus) and in birds beak (Cordylanthus 
ramosus). Therefore, vegetation cover was slightly greater toward the end of the sampling season. 
However, this would only affect the results of the second hypothesis. Likewise, after the fire, grass 
established quickly. There was never more than 5% grass cover in a plot, but new cover was noted. It is 
important to note, however, that the burn severity attribute and remote sensing indices were not affected 
by pre-fire sampling time because the pre-fire data were not used in those analyses.  
 
Georegistration errors between the imagery and field data may be another source of error. An RMS error 
less than ½ a pixel is not much of a shift, but may be just enough to produce errors in the error matrix. 
Furthermore, (for hypothesis #2) during the post-fire surveys, we attempted to put plots in the same 
location using the GPS. Stakes were not used to delineate plot centers or boundaries due to regulations at 
the USSES. It was easier to have better accuracy with the point frame plots because we were able to lay 
out the perimeter based on a polygon shapefile in the GPS; however, the ocular estimates were located 
using only a point. Because of this, there is likely more georegistration error introduced in the ocular 
plots, which consisted of most of our field data. This would not affect the index results; it would only 
affect the results of the second hypothesis. Although a high precision GPS instrument was used (+/- 0.7m 
@ 95% CI) (Serr, unpublished) atmospheric effects may have also contributed to georegistration errors.  
 
This study used 269 field plots for training and validation. Additional studies could be done to show the 
optimal number of training points for sufficient or better classification of burn severity.  
 
The biggest limitation to our study is that the results are based on one burn and that it was a prescribed 
burn rather than natural. Because there were more than normal amounts of fine fuels (due to a wet spring) 
and because there were high winds during the fire, the majority of the burn was high burn severity. There 
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was not a sufficient number of post-fire field plots in the low burn severity class to justify having more 
categories, such as unburned, low, moderate, and high burn severity classes for classification. The few 
low burn severity plots were incorporated into the moderate burn severity class and considered 
‘incompletely burned’ because the sample size was too low to have its own class. Inclusion of the low 
burn severity data in the moderate class may have skewed the data resulting in misrepresented moderate 
severity data. One possibility would have been to discard the low severity data all together. It would be 
useful to develop a burn severity classification with more detailed categories such as unburned, low, 
moderate, and high. Because there were not enough unburned and low burn severity plots within the burn 
perimeter, the hypothesis #2 sub-study (which correlated pre-fire fuel loads with burn severity) could only 
be performed between the moderate and high burn severity plots.  
 
Hyperspectral imagery should be further explored to detect burn severity in rangelands because it may 
have wavelengths and corresponding bandwidths that are more sensitive to fire effects. For instance, 
AVIRIS channels 60 and 148, as suggested by van Wagtendonk et al. (2004), may discriminate fire 
effects better than Landsat bands 4 and 7 in rangelands. Another area for further study is performing an 
extended assessment of burn severity (the spring following the burn). It may be possible that rangeland 
burn severity is best detected with an extended assessment. An extended assessment may delineate areas 
of high burn severity better, either where perennial vegetation has not recovered or where introduced 
annuals have established.  
 
The best burn severity index using SPOT imagery was the SAVI index (Fig. 10). However, our results 
with SAVI are contradictory with Epting’s et al. (2005) results whereas their SAVI and MSAVI indices 
performed worse than their indices incorporating mid-infrared bands. Their study area is in a coastal, 
cloudy region (Alaska) with potentially more atmospheric haze making the red band ineffective. More 
importantly, their study area was in a forested ecosystem. As suggested by White et al. (1996), Epting et 
al. (2005), and Roy et al. (2006) different burn severity indices may be needed across different ecosystem 
types. Furthermore, if better burn severity accuracies (>76% users and >63% producer’s) are needed for 
recovery purposes within high burn severity areas, then a different algorithm should be sought.   

 
Figure 10. The SAVI burned versus unburned index using SPOT data. 
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The remote sensing indices used in this study are reproducible and straightforward. We chose to focus on 
remote sensing methods that incorporate satellite imagery and fit the needs of land managers (reasonable 
cost and practical spatial and spectral resolution) and methods that would not require the user to 
incorporate large amounts of field studies. This, after all, is the intent of remotely sensed models. The 
spatial resolution of imagery is ultimately determined by the necessary scale of fire recovery efforts. 
Because fire recovery efforts vary according to remoteness, economic impacts of the burn, and burn 
severity, land managers may require different types of satellite imagery. Though our best results are with 
the burned versus unburned algorithms, a 73% overall accuracy for the RdNBR burn severity index 
encourages future research. The RdNBR provided the best initial assessment users and producer’s 
accuracies for this rangeland prescribed burn indicating its usefulness to land managers. These accuracies 
show moderate agreement between the index burn severity classes and the field-based burn severity 
classes. Before this index is entirely recommended, however, more studies need to be performed using the 
RdNBR in rangelands that have heterogeneous fuel loads, and within burns that have variable burn 
severities. Future research entailing an extended assessment and the application of hyperspectral imagery 
is necessary to contribute to our understanding of burn severity in rangeland ecosystems and vegetation 
recovery. 
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APPENDIX I: RESULTS OF TEN REMOTE SENSING INDICES 
Table 15. Results of all SPOT burned versus unburned remote sensing indices. 

 SAVI   Reference Data  

  Unburned Burned Total 
Remote Unburned 50 0 50 
Sensing Burned 0 100 100 
Data Total 50 100 150 
 Overall 100%   
 Users 100% 100%  
  Producers 100% 100%   
    

 pNDSWIR   Reference Data  

  Unburned Burned Total 
Remote Unburned 46 2 48 
Sensing Burned 4 98 102 
Data Total 50 100 150 
 Overall 96%   
 Users 92% 98%  
  Producers 96% 96%  
    

RelMod   Reference Data  

NDVI  Unburned Burned Total 
 Unburned 44 3 47 
Remote Burned 6 97 103 
Sensing Total 50 100 150 
Data Overall 94%   
 Users 88% 97%  
  Producers 94% 94%  
    
MSAVI    Reference Data  

  Unburned Burned Total 
Remote Unburned 45 3 48 
Sensing Burned 5 97 102 
Data Total 50 100 150 
 Overall 95%   
 Users 86% 99%  
 Producers 98% 93%  
     
dNDSWIR   Reference Data   

  Unburned Burned Total 
Remote Unburned 41 43 84 
Sensing Burned 9 57 66 
Data Total 50 100 150 
 Overall 65%   
 Users 82% 57%  
 Producers 49% 86%  
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Table 16. Results of all Landsat burned versus unburned remote sensing indices. 
 dNBR   Reference Data  

  Unburned Burned Total 
Remote Unburned 43 2 45 
Sensing Burned 7 98 105 
Data Total 50 100 150 
 Overall 94%   
 Users 86% 98%  
  Producers 96% 93%  
    

 NDSWIR   Reference Data  

  Unburned Burned Total 
Remote Unburned 37 4 41 
Sensing Burned 13 96 109 
Data Total 50 100 150 
 Overall 89%   
 Users 74% 96%  
  Producers 90% 88%  
    

MSAVI   Reference Data  

  Unburned Burned Total 
Remote Unburned 45 3 48 
Sensing Burned 5 97 102 
Data Total 50 100 150 
 Overall 95%   
 Users 94% 95%  
  Producers 90% 97%  
    
 RdNBR  Reference Data  
  Unburned Burned Total 
Remote Unburned 43 1 44 
Sensing Burned 7 99 106 
Data Total 50 100 150 
 Overall 95%   
 Users 86% 99%  
 Producers 98% 93%  
    
 SAVI  Reference Data  
  Unburned Burned Total 
Remote Unburned 45 3 48 
Sensing Burned 5 97 102 
Data Total 50 100 150 
 Overall 95%   
 Users 90% 97%  
 Producers 94% 95%  
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Table 17. Results of all SPOT burn severity remote sensing indices. 
 SAVI   Reference Data  

  Unburned Moderate High Total 
Remote Unburned 50 0 0 50 
Sensing Moderate 0 19 12 31 
Data High 0 31 38 69 
 Total 50 50 50 150 
 Overall 71%    
 Users 100% 38% 76%  
  Producers 100% 61% 55%  
    
    
pNDSWIR   Reference Data  
  Unburned Moderate High Total 
Remote Unburned 46 2 0 48 
Sensing Moderate 4 20 12 36 
Data High 0 28 38 66 
 Total 50 50 50 150 
 Overall 69%    
 Users 92% 40% 76%  
  Producers 96% 56% 58%  
    
    
RelMod   Reference Data  
NDVI  Unburned Moderate High Total 
 Unburned 44 3 0 47 
Remote Moderate 3 14 7 24 
Sensing High 3 33 43 79 
Data Total 50 50 50 150 
 Overall 67%    
 Users 88% 28% 86%  
  Producers 94% 58% 54%   
    
    
 MSAVI  Reference Data  
  Unburned Moderate High Total 
Remote Unburned 45 3 0 48 
Sensing Moderate 4 21 17 42 
Data High 1 26 33 60 

 Total 50 50 50 150 
 Overall 67%    

 Users 86% 38% 76%  
 Producers 98% 51% 55%  

    
    
    
 dNDSWIR  Reference Data  
  Unburned Moderate High Total 
Remote Unburned 41 2 0 43 
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Sensing Moderate 8 20 13 41 
Data High 1 28 37 66 

 Total 50 50 50 150 
 Overall 65%    

 Users 82% 40% 74%  
 Producers 95% 49% 56%  

 
Table 18. Results of all Landsat burn severity remote sensing indices. 

 dNBR   Reference Data  
  Unburned Moderate High Total 
Remote Unburned 43 2 0 45 
Sensing Moderate 6 19 13 38 
Data High 1 29 37 67 
 Total 50 50 50 150 
 Overall 66%    
 Users 86% 38% 74%  
  Producers 96% 50% 55%  
    
    
NDSWIR   Reference Data  
  Unburned Moderate High Total 
Remote Unburned 37 4 0 41 
Sensing Moderate 12 17 17 46 
Data High 1 29 33 63 
 Total 50 50 50 150 
 Overall 58%    
 Users 74% 34% 66%  
  Producers 90% 37% 52%  
    

    

MSAVI   Reference Data  

  Unburned Moderate High Total 
Remote Unburned 45 3 0 48 
Sensing Moderate 4 21 17 42 
Data High 1 26 33 60 
 Total 50 50 50 150 
 Overall 67%    
 Users 90% 42% 66%  
  Producers 94% 50% 55%  
    

    

 RdNBR  Reference Data  

  Unburned Moderate High Total 
Remote Unburned 43 1 0 44 
Sensing Moderate 6 28 12 46 
Data High 1 21 38 60 
 Total 50 50 50 150 
 Overall 73%    
 Users 86% 56% 76%  
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 Producers 98% 61% 63%  
    
    
SAVI   Reference Data  

  Unburned Moderate High Total 
Remote Unburned 45 3 0 48 
Sensing Moderate 4 22 16 42 
Data High 1 25 34 60 
 Total 50 50 50 150 
 Overall 66%    
 Users 90% 44% 68%  
 Producers 94% 52% 57%  
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APPENDIX II: OTHER REMOTE SENSING INDICES APPLIED  
Two other remote sensing indices using the modified NDVI index were performed to test their accuracy 
and compare their results with other indices. Results presented previously were limited to the best indices. 
Because the SWIR band is useful for fire detection, it was incorporated into the NDVI index by replacing 
the NIR band. The post-fire SPOT image was used to create the post modified NDVI (pModNDVI) 
(Table 19). The differenced modified NDVI (dModNDVI) was created using both the pre-fire and post-
fire SPOT images (Table 19). 
 
The dModNDVI and rModNDVI (presented previously) had the same overall accuracy for burn severity 
results (Tables 20 and 14, respectively), but the dModNDVI had slightly lower overall accuracy for the 
burned versus unburned results (Table 21). Though the pModNDVI overall accuracy results for burned 
versus unburned (Table 21) were similar to results already presented, its burn severity results were very 
poor.  
 

Table 19. Other remote sensing indices to detect burn severity. 
 Remote Sensing Index Algorithm Sensor 

pModNDVI 
 
 
dModNDVI 

SWIR – Red 
SWIR + Red 
 
Pre-fire ModNDVI –  
Post-fire ModNDVI 

SPOT:  
Red = band 2 
SWIR = band 4 

 
 
 
 
 
 
Table 20. ‘Burn severity’ accuracies and kappa statistics for other remote sensing indices using SPOT 5 
imagery. 

Accuracy Type pModNDVI dModNDVI 

Overall Accuracy 53% 67% 

Producer’s 
Unburned 100% 98% 

Users Unburned 32% 80% 

Producer's Moderate 35% 53% 

Users Moderate 42% 42% 

Producer's High 58% 58% 

User's High 84% 80% 

KHAT  0.3 0.5100 

Variance 0.004045 0.0033 

Z Stat 4.716899 8.8441 
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Table 21. ‘Burned versus unburned’ accuracies and kappa statistics for other remote sensing indices using 
SPOT 5 and imagery. 

Accuracy Type pModNDVI dModNDVI 

Overall Accuracy 84% 93% 

Producer's Unburned 100% 98% 

Users Unburned 34% 80% 

Producer's Burned 82% 91% 

Users Burned 100% 99% 

KHAT  0.435897 0.8272 

Variance 0.007515 0.0024 

Z Stat 5.02837 16.6233 
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APPENDIX III: DETAILS OF THE LANDSAT AND SPOT SENSORS 
 
Table 22. Comparison of Landsat 7 and SPOT 5 sensor characteristics (Lillesand et al., 2004). 
 Landsat 7 ETM+ SPOT 5 
Dates August 27, 2005 

September 28, 2005 
July 4, 2005 
October 24, 2005 

Spatial Resolution 30 mpp-- multispectral 
60 mpp-- Thermal 
15 mpp-- Panchromatic 

10 mpp-- multispectral 
20 mpp-- SWIR  
2.5 mpp-- Panchromatic 

Bands and Spectral 
Resolution (µm) 
 

1     0.45 - 0.52  (Blue) 
2     0.52 – 0.60  (Green) 
3     0.63 – 0.69  (Red) 
4     0.76 – 0.90  (NIR) 
5     1.55 – 1.75  (SWIR) 
6     10.4 – 12.5  (Thermal) 
7     2.08 – 2.35  (MIR) 
8     0.52 – 0.90 (Panchromatic)     
 

1     0.50 – 0.59  (Green) 
2     0.61 – 0.68  (Red) 
3     0.78 – 0.89  (NIR) 
4     1.58 – 1.75  (SWIR) 
5     0.48 – 0.71  (Panchromatic)     

Cost/100 km2 $275 (gap-filled) $406 
Operational 
Altitude (km) 

705 832 

Swath Width (km) 185 60-80 
Phase Orbit 16 Days 26 Days 
Launch April 15, 1999 May 3, 2002 
Image Area (km2) 31,450 3600 
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APPENDIX IV: ASSESSMENT OF HYPOTHESIS #2: CAN BURN SEVERITY BE PREDICTED 
WITH FUEL LOAD? 
It is hypothesized that fuel load can be used to reliably predict burn severity, and thus pre-burn conditions 
can be derived (post-burn) using remote sensing derived burn severity. Only moderate and high burn 
severity data (n = 193 plots) could be used in this analysis because the unburned data locations were 
biased. Except for two plots within the burn, the unburned plots were chosen and intentionally NOT 
burned. Taking into consideration georegistration errors, two unburned plot samples are not enough to 
include in the data analysis. Therefore, the question became: can moderate and high burn severity be 
predicted with fuel load? 
 
A Spearman correlation method was used (because there is a non-parametric distribution) to assess the 
correlation between fuel load ocular estimates and remote sensing index burn severity values. Fuel load 
categories were 1, 2, and 3, and the burn severity category was continuous. The Landsat relative dNBR 
values are significantly correlated with fuel load (P <0.001) but moderately (rho = 0.292). SPOT SAVI 
values are also significantly correlated with fuel load (P <0.0001), however, these values do not predict 
fuel load well (rho = -0.362). 
 
In addition, a Spearman correlation method was used (because there is a non-parametric distribution) to 
assess the correlation between fuel load ocular estimates and remote sensing index burn severity values 
that were put into ordinal categories. Index values were placed into ordinal categories (unburned, 
moderate severity, and high severity) the same as described above. Fuel load categories were 1, 2, and 3, 
and burn severity categories were 2 and 3. Burn severity is not significantly correlated with fuel load (P = 
0.5273, rho = 0.046) using the SPOT SAVI data; and fuel load does not predict burn severity significantly 
nor well (P = 0.2049, rho = 0.092) using the Landsat relative dNBR data. 
 
These results conclude that pre-burn conditions cannot be derived post burn using remote sensing data. 
This may be due to a combination of factors such as timing of field data collection, timing of imagery, 
span of time between pre-and post-fire images and georegistration errors. Additionally, SPOT lacks the 
spectral resolution for adequate burn severity classification and although Landsat demonstrated a greater 
sensitivity of burn severity, fuel load still did not have a significant effect, perhaps due to Landsat’s 
spatial resolution. Higher-than-normal amounts of pre-fire fuel load and high winds during the fire 
contributed to most of the study area having high burn severity. Though the nature of fire is sporadic and 
pre-fire fuel loads cannot be controlled, a more orthogonal design may better detect the relationship 
between fuel load and burn severity. Also, before the fire, fuel load was fairly homogenous across the 
study area.  This study could be improved by having more sample plots in the unburned area and not so 
heavily weighted with high burn severity plots.  
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