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ABSTRACT 
Wildland fires are common in rangelands worldwide. The potential for high severity fires to affect long-
term changes in rangelands is considerable, and for this reason assessing fire severity shortly after the 
fire is critical. Such assessments are typically carried out following Burned Area Emergency Response 
teams or similar protocols. These data can then be used by land managers to plan remediation and future 
land uses. To complement these procedures and explore fire severity modeling of sagebrush steppe 
rangelands, we compared models developed using 1) post-fire imagery only with 2) differenced imagery 
(pre-fire minus post-fire imagery).  All models were developed from Classification Tree Analysis 
(CTA) techniques using Satellite Pour l'Observation de la Terre 5 (SPOT 5) imagery and Shuttle Radar 
Topography Mission (SRTM) elevation data. The results indicate that both techniques produced similar 
fire severity models (model agreement = 98.5%) and that little improvement in overall accuracy was 
gained by using differenced imagery (0.5 %).  Therefore, we suggest the use of CTA models developed 
using only the post-fire imagery.  The analyses and techniques described in this paper provide land 
managers with tools to better justify their recommendations and decisions following wildland fires in 
sagebrush steppe ecosystems. 
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INTRODUCTION 
Wildland fires are a common occurrence throughout the Intermountain West.  While historic plant 
communities may be adapted to fire, the frequency and intensity of today’s wildfires is different 
compared to what occurred in the past (DeBano et al., 1998; Thoren and Mattsson 2002). The change in 
frequency and intensity can be attributed to 1) fire suppression efforts that have inadvertently created 
fuel stockpiles (Pyne et al 1996) and 2) the conversion of sagebrush-grass communities to fire-
promoting cheatgrass (Bromus tectorum L.) dominated communities (Brooks et al 2004).  The 
consequences of these differences are manifest in various impacts on wildlife habitat, forage production, 
potential soil erosion (Pierson et al., 2001; Finley, 2006; Moffet et al., 2007), and rangeland health 
(Pyke et al., 2002). 
 
Assessing the effect of wildfires is important to land management agencies to minimize threats to 
life/property and prevent unacceptable degradation of natural and cultural resources (Sharon Paris, pers. 
comm.; Department of Interior 2004).  However, due to the broad extent and distribution of wildfires in 
the Intermountain West the ability of land managers to closely evaluate each and every fire can be 
logistically difficult if not impossible.  For these reasons, the application of remote sensing models that 
accurately and reliably classify fire severity may be useful (Lentile et al 2006). 
 
Several image processing methods have been used to model fire severity (Garcia and 
Chuvieco, 2004); most have been designed for forested ecosystems (Turner et al., 1994; White et al., 
1996; Patterson and Yool, 1998; Van Wagtendonk et al., 2004; Brewer et al., 2005; Epting et al., 2005).  
Prior to 1999, the most widely used fire severity modeling method was an NDVI-based technique to 
estimate biomass loss, and hence, fire severity (Salvador et al., 2000; Diaz-Delgado et al., 2003; Flasse 
et al., 2004). In 1999, the normalized burn ratio (NBR) technique was developed and has been widely 
applied and accepted (Key and Benson 1999; Salvador et al., 2000; Key and Benson, 2006). 
 
Another form of the NBR model is known as a differenced NBR (dNBR).  It estimates fire severity by 
comparing a pre-burn NBR model to that of a post-burn NBR model.  The result is a model where the 
magnitude of change has been normalized by pre-burn landscape characteristics (Key and Benson 1999; 
Key and Benson, 2004; Van Wagtendonk et al., 2004; Cocke et al., 2005). 
 
While fire severity studies reported by Finley (2006) and Norton (2006) suggest the NBR techniques 
may not be well-suited to sagebrush-steppe ecosystems, more recent research (Weber and Seefeldt, 
2008) has demonstrated the application of classification tree analysis (CTA) for fire severity modeling 
of rangelands with favorable results.  CTA is a non-probabilistic, non-parametric statistical technique 
well-suited to modeling skewed, non-normal data and phenomena (Breiman et al. 1998; Friedl and 
Brodley 1997; Lawrence and Wright 2001; Miller and Franklin 2001).  The CTA algorithms select 
useful spectral and ancillary data which optimally reduce divergence in a response variable (Lawrence 
and Wright 2001) such as fire severity observations.  CTA uses machine-learning to perform these 
binary recursive splitting operations and ultimately yields a classification tree diagram that is used to 
produce a model of the response variable.  Splitting algorithms common to CTA include entropy, gain 
ratio, and Gini. The entropy algorithm has a tendency to over-split and thereby creates an unnecessarily 
complex tree (Zambon, et al., 2006).  The gain ratio algorithm addresses the over-splitting problem 
through a normalization process while the Gini algorithm attempts to partition the most homogeneous 
clusters first using a measure of impurity (McKay and Campbell 1982; Zambon et al., 2006).   
 
A previous study reported by Weber et al (2008) described fire severity models created using post-fire 
satellite imagery only.  The goals of this study were to model fire severity in semi-arid rangelands and 
compare the results derived using post-fire imagery only with results from differenced imagery (i.e., 
derived from pre- and post-fire differenced imagery).  Specifically, we will test whether the CTA model 
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derived using post-fire only imagery satisfactorily classifies high severity fire areas in the sagebrush 
steppe. 
 
METHODS 
Study Area 
This study focuses upon the Hitching Post pasture burn at the U. S. Sheep Experiment Station (USSES) 
near Dubois, Idaho (Figure 1).  The prescribed burn was begun September 14th and was extinguished 
September 15th, 2005.  The fire boundary encompassed 2.44 km2 within the Hitching Post pasture (112° 
7’ W 44° 19’ N), a 3.24 km2 fenced parcel on the USSES that ranges in elevation from 1765 to 1800 m.  
Mean annual precipitation (1971 to 2000) at the Dubois Experiment Station (112° 12’ W 44° 15’N, 
elevation, 1661 m) is 331 mm with 60% falling during April through September.  Soils are mapped as 
complexes of Maremma (Fine-loamy, mixed, superactive, frigid Calcic Pachic Argixerolls ), Pyrenees 
(Loamy-skeletal, mixed, superactive, frigid Typic Calcixerolls), and Akbash (Fine-loamy, mixed, 
superactive, frigid Calcic Pachic Argixerolls) soils on slopes less than 20 percent, but mostly 0 to 12 
percent (NRCS 1995). 

 
Figure 1. Location of the USDA ARS Sheep Experiment Station and site of the prescribed fire used in this 
study. 
 
Vegetation on the study site is a sagebrush-grass community that is dominated by mountain big 
sagebrush (Artemisa tridentata ssp. vaseyana [Rydb.] Beetle) and threetip sagebrush (A. tripartita 
Rydb.).  Subdominant shrub species include antelope bitterbrush (Purshia tridentata [Pursh] DC.), 
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yellow rabbitbrush (Chrysothamnus viscidiflorus (Hook.) Nutt.), and spineless horsebrush (Tetradymia 
canescens DC.).  There are a few small patches of the exotic forbs leafy spurge (Euphorbia esula L.) 
and spotted knapweed (Centaurea stoebe L. ssp. micranthos [Gugler] Hayek) and trace amounts (<1% 
of overall plant cover) of the exotic annual cheatgrass.  Lupine (Lupinus argenteus Pursh) is the most 
plentiful forb on the study site and the graminoids present are thickspike wheatgrass (Elymus 
lanceolatus [Scribn. & J.G. Sm.] Gould ssp. lanceolatus), bluebunch wheatgrass (Pseudoroegneria 
spicata [Pursh] A. Löve ssp. spicata), and plains reedgrass (Calamagrostis montanensis Scribn. ex 
Vasey). 
 
The management of this pasture for the past decade has been light, short duration, grazing with sheep 
and horses in spring and/or fall.  There was no grazing in this pasture during the 2.5 years prior to the 
prescribed burn. 
 
Field Sampling 
Beginning one week after the prescribed burn, 277 randomly selected sample areas (60 x 60 m) were 
visited to assess fire severity.  The sample areas were located on the ground by navigating to the 
preselected area with a GPS receiver using real-time positioning.  These positions were later post 
process differentially corrected to achieve a horizontal positional accuracy of <1m (Serr et al. 2006).  
While subjective, a fire severity rating (0 = Unburned, no vegetation change; 1 =  little vegetation/fuel 
consumption by the fire; 2 =  most of the vegetation was consumed; and 3 = burned (the area was 
considered a completely consumed by the fire) was assigned to each area visited following methods 
modified from the combined work of US Forest Service field methods (Bobbe et al., 2001), the US Park 
Service field methods (Switky  2003), and Key and Benson’s (Key and Benson 1999; 2004) composite 
burn index (CBI).  Groups one (n=13) and two (n=57) were later combined because only 13 areas were 
assigned to group one which was insufficient for validation.  In addition, some aspects of fire severity 
can be quantified but classification of general severity has proven difficult. Classification of burn or fire 
severity, based on the post-fire appearance of litter and soil (Ryan and Noste 1983), are useful for 
placing severity into broadly defined, discrete classes, ranging from low to high. A general burn severity 
classification developed by Hungerford (1996) in forest situations relates burn severity to soil resource 
response and has three classes; low, moderate, and high.  In rangeland ecosystems the medium and high 
severity classes described by Hungerford merge as there are not large woody component and deep duff 
layer, whose response to burning differentiates the classes.  Therefore, we chose a simple classification 
of low or high severity and as a result, three classes remained: 0 (unburned), 1 (low fire severity), and 2 
(high fire severity).   
 
It was not an objective of this study to separate burned from unburned areas and for this reason all 
unburned sample areas were omitted from subsequent processing.  We recognize that the few unburned 
areas within the fire perimeter (n=9) would not be classified as unburned, but most likely, would be 
classified as low fire severity areas based upon preliminary classification results (i.e., using unburned 
areas in the analysis).  Preliminary analyses further indicated that spectral signatures of unburned and 
low fire severity sites were very similar and spectrally indistinct (Richards 1993; Lillesand and Kiefer 
2000).  This potential for error however, was considered acceptable because the focus of the study was 
to develop a model that would correctly identify high fire severity areas so land managers performing 
post-fire recovery planning and remediation could focus their resources on high fire severity areas. 
 
Image Processing 
Pre- and post-fire Satellite Pour l'Observation de la Terre 5 (SPOT 5) satellite imagery (10m x 10m 
pixels) was acquired for the USSES study site for August 27, 2005 and September 28, 2005, 
respectively.  The imagery was georectified using 1 m National Agricultural Imagery Program 
orthophotography for the study area (RMSE = 3.48) using the same set of control points within ArcGIS, 
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corrected for atmospheric effects and projected into Idaho Transverse Mercator (NAD 83) using a first 
order affine transformation and nearest neighbor resampling. 
 
Normalized difference vegetation index (NDVI), normalized burn ratio (NBR), and biomass estimates 
(the ratio of the short-wave infrared band divided by the visible green band [Mirik et al. 2005]) were 
calculated within Idrisi Kilimanjaro using SPOT reflectance data.  The biomass layer is a simple ratio-
type vegetation index where reflectance values from the short-wave infrared region (band) are divided 
by reflectance values from the green band.  While Mirik et al. (2005) demonstrated a strong empirical 
relationship (R2 = 0.87) between this index and total rangeland biomass, the relationship of the biomass 
index and actual rangeland biomass was not performed as part of this study.  The biomass index differs 
from the normalized difference infrared index (NDII [Hunt and Yilmaz 2007]) in that the biomass index 
is a simple ratio-type index as opposed to a normalized difference-type index and the biomass index 
does not make use of the infrared band as does NDII.  Another related normalized difference-type index 
is the normalized difference water index (NDWI) which uses the ratio of the difference between the near 
infrared and thermal infrared bands divided by the sum of these same bands (Gu et al. 2007).  Neither 
the NDII nor NDWI were used in this study (NDWI cannot be used with SPOT imagery as this sensor 
does not include a thermal infrared band). 
 
In addition, topography data were assembled for use as ancillary data within the CTA process (Elumnoh 
and Shrestha 2000).  Elevation data were acquired from the shuttle radar topography mission (SRTM) 
and was resampled to 10m to match the spatial resolution of the SPOT 5 imagery.  Slope and aspect 
models were derived from these elevation data using Idrisi Kilimanjaro. 
 
Polygon shapefiles describing the fire perimeters were rasterized and used as a mask for all raster data.  
Field observations were similarly masked and only those points falling inside the fire perimeter were 
used in the CTA. This masking process was done to help facilitate classification by prudently applying 
ancillary knowledge to better inform the classifier.  This process is a well accepted technique referred to 
as “cluster busting” (Jensen 1996; Hunter 2004). CTA was performed using the Gini splitting algorithm 
(Zambon et al., 2006) with five input images.  The post-fire condition dataset contained near-infrared 
(NIR), NDVI, NBR, and biomass band-ratios, along with the slope layer.  The pre-post fire differenced 
dataset contained differenced NIR (dNIR), differenced NDVI (dNDVI), differenced NBR (dNBR) (Key 
and Benson 1999; Key and Benson, 2004; Van Wagtendonk et al., 2004; Cocke et al., 2005), 
differenced biomass, and the same slope layer.  In each case, image differencing was performed by 
subtracting the post-fire imagery from the pre-fire imagery. 
 
To absorb georegistration error within the SPOT imagery (RMSE=3.48) and ensure correct and 
representative pixels were included in the analysis, all sample areas were buffered by 5m (Weber 2006). 
The resulting layers were rasterized using ArcGIS 9.1 and subset into training and validation sites.  As a 
result, a total of 385 training site pixels and 207 validation site pixels were created.  The CTA was 
performed with Idrisi Kilimanjaro using these data. 
 
RESULTS AND DISCUSSION 
The CTA model developed using five post-fire satellite imagery layers (NIR, NDVI, NBR, biomass, and 
slope) correctly identified all 186 high fire severity validation areas (n = 186, user accuracy = 100%) 
(Figure 2a, Table 1).  Similarly, using five differenced input layers (dNIR, dNDVI, dNBR, differenced 
biomass, and the same slope topography layer) user accuracy was 99.5% (Figure 2b, Table 2).  While 
overall accuracy intially appears to be better using differenced imagery (97.1% compared with 96.6%), 
this slight difference is considered insignificant.  Statistically testing this difference is problematic 
however as each model exhibits a high degree of autocorrelation (Moran’s I = 0.55 and 0.51 for post-
fire and differenced imagery, respectively) and due to the large number of pixels within each model, 
statistical tests like mixed linear models would calculate a very small standard error (due to the high 
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proportion of pixels in agreement) thereby causing the test to detect differences whether they were 
practically significant or not (Teri Peterson, pers. comm.).  The authors argue that any differences 
reported here is not of practical significance. 
 

 
Figure 2. Resulting fire severity models produced using classification tree analysis (CTA) with post-fire 
imagery (a), differenced imagery (b), and differenced models (c). 
 
Map arithmetic techniques were used to identify those areas (pixels) where the two models predicted 
different fire severity levels (Figure 2c).  Nearly all pixels exhibited agreement in predicted fire severity 
(98.5%).  The majority of the disagreement (73% of all disagreement pixels) was in areas where the 
differenced imagery model predicted a high fire severity class, but the post-fire imagery model 
predicted low fire severity (i.e., the differenced imagery model predicted more area burned with high 
fire severity). 
 
Table 1. Classification tree analysis (CTA) results for fire severity modeling derived using post-fire raster 
layers. 

 Known validation sites  
 Low fire 

severity 
High fire 
severity 

Total User 
accuracy 

Low fire severity 14 7 21 0.66 
High fire severity 0 186 186 1.00 
Total   14 193 207  
Producer’s accuracy 0.93 0.97  0.97a 
a Overall accuracy 
Kappa index of agreement = 0.78 
 
Based on overall accuracies and level of agreement between the two models it is clear that producing a 
reliable fire severity model in sagebrush steppe ecosystems can be accomplished using just post-fire 
imagery.  Acquiring both pre- and post-fire imagery and producing differenced image layers adds 
tremendously to the cost and effort with no improvement in the resulting model for this burn; however, 
this may not be true for all rangelands. Additional studies are merited to determine whether this is true 
for other rangelands. 
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Table 2. Classification tree analysis (CTA) results for fire severity modeling derived using differenced raster 
layers. 
 

 Known validation sites  
 Low fire 

severity 
High fire 
severity 

Total User 
accuracy 

Low fire severity 13 5 18 0.72 
High fire severity 1 188 189 0.99 
Total 14 193 207  
Producer’s accuracy 0.93 0.97  0.97a 
a Overall accuracy 
Kappa index of agreement = 0.80 
 
Assessment of error and bias 
Models developed using CTA were able to classify high fire severity areas with good user accuracy 
(~100%) (cf. Figure 3 for a step-by-step approach and cartographic model of this technique). However, 
achieving satisfactory results appears to be a function of adequate sample size for each class considered 
(low fire severity or high fire severity).  Initially, it may appear that a disproportionately large number 
of validation sites were used in high fire severity areas (n=193, 92%; tables 1 and 2).  However, as fire 
severity is primarily a function of the fire’s behavior --which is closely tied to factors such as the 
amount and type of fuels and the weather during the fire (Pyne et al. 1996) -- the proportion of high fire 
severity sites (used for both modeling and validation) agreed well with field observations where 92% of 
the study area was recorded as high severity (Figure 2a, b).  Indeed when the proportions of the random 
sampling locations were compared with proportions of fire severity areas, the results appear equitably 
distributed. 
 
CONCLUSIONS 
Post-fire vegetation management in western rangelands should be based on pre-fire vegetation, post-fire 
weather conditions, soils, available resources (such as seeds, equipment, and personnel), and fire 
severity.  Given the size and distribution of western fires, land managers face an almost impossible task 
in trying to determining fire severity in a time frame useful for the preparation of remediation plans.  
The development of GIS layers that combine vegetation information, climate, soils, and fire severity 
could ease the task of creating predictive models for more effective remediation plan development.  The 
results of this research addresses mapping of fire severity, which can be used as one layer within a GIS-
based remediation model.  Using easily obtained post-fire SPOT 5 imagery, high severity burn areas can 
be accurately, rapidly, and inexpensively delineated, resulting in a GIS layer useful for remediation plan 
development. 
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Figure 3. Cartographic model of the process followed to produce a fire-severity model using classification 
tree analysis at both the Clover and USSES study sites. 
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