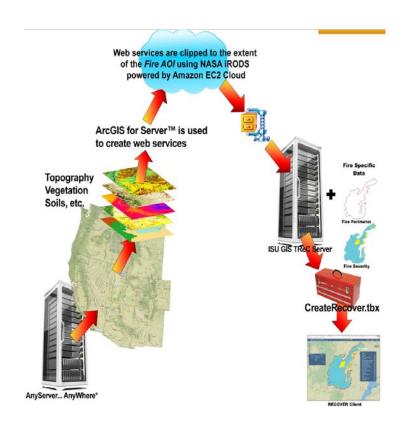
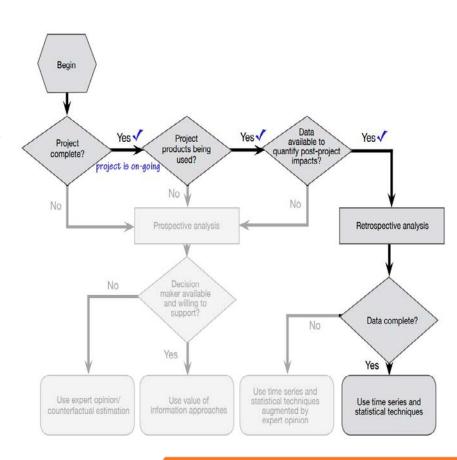
Evaluating the Socioeconomic Impacts of Rapid Assembly and Geospatial Data in Wildfire Emergency Response Planning

A Case Study using the NASA RECOVER Decision Support System (DSS)


William Toombs¹
Keith Weber¹, John Schnase², Tesa Stegner³, Eric
Lindquist⁴, and Davis Taylor¹

- 1 ISU GIS TReC
- 2 NASA Goddard Space Flight Center
- 3 ISU Department of Economics
- 4 BSU PPRC

Background: NASA RECOVER DSS


- Designed as post-wildfire DSS
 - Rapid assembly of site-specific data
 - Delivered in customized GIS analysis environment
- Extensive use of earth observing satellite system imagery & derived products (NDVI, dNBR, LANDFIRE, etc.)

Approach

- Statistical analysis
 - RECOVER has been used to assist in rehabilitation planning for 33 wildfires.
 - Structured stakeholder interviews of RECOVER users.
- Direct benefits
 - Quantify time saved in wildfire rehabilitation planning
 - Monetize the results of RECOVER's use
- Indirect benefits
 - Value of better-informed decisions

Tier – 1 Users: Land Management Agencies

- Stakeholders:
 - Bureau of LandManagement
 - Forest Service
 - Idaho Department of Lands

Tier – 2 Users: Non-Land Management Agencies

- Stakeholders:
 - Bureau of Reclamation
 - National Oceanic and AtmosphericAdministration
 - Idaho Fish and Game
 - Department of Transportation

Preliminary Results

- To date, four Tier-1 interviews conducted
 - Results:
 - Time- and cost-savings for decision makers and support staff in developing ES&R and BAER plans:
 - Time saved: up to 40hrs of staff time per fire
 - Cost saved: up to \$3K in staff time per fire
 - Value of better-informed decisions:
 - \$500K was saved on the "Henry's Creek" fire by using RECOVER DSS

Future Direction

- Several stakeholder interviews upcoming
 - IDL
 - CalDOT
 - BLM
- Upon completion of interviews:
 - Quantify proximate benefits
 - Conduct qualitative analysis
 - Describe value of information
 - Characterize ultimate benefits

Future Direction Cont'd

- Prospective analysis question:
 - Increase in wildfire frequency
 - Number of land managers remains the same
 - Will dependence on geospatial data and satellite imagery increase?

Suggestions or Questions

RECOVER is a NASA Applied Sciences sponsored project. K. T. Weber (PI), J. Schnase (Co-PI), Goddard Space Flight Center, T. Stegner (Co-PI) and E. Lindquist (Co-PI)

References

Carroll, M., Schnase, J., Weber, K., Brown, M., Gill, R., Haskett, G., and Gardner, T. (2013). A new application to facilitate post-fire recovery and rehabilitation in Savanna ecosystems. *Earthzine*. Retreived from https://earthzine.org/2013/06/22/a-new-application-to-facilitate-post-fire-recovery-and-rehabilitation-in-savanna-ecosystems/

Dick, S. and Launius, R. (Eds.). (2007). *Societal impact of spaceflight* (SP-2007-4801). Washington, DC: NASA/History Division.

National Aeronautics and Space Administration/ Earth Sciences Division. (2012). Measuring socioeconomic impacts of earth observations: a primer. Retrieved from http://appliedsciences.nasa.gov/system/files/docs/SocioeconomicImpacts.pdf

Schnase, J., Carroll, M., Weber, K., Brown, M., Gill, R., Wooten, M., May, J., Serr, K., Smith, E., Goldsby, R., Newtoff, K., Bradford, K., Doyle, C., Volker, E., and Weber, S. (2014). RECOVER: an automated cloud-based decision support system for post-fire rehabilitation planning. *Photogrammetry, Remote Sensing and Spatial Information Sciences*, 40(1), 363-369.