RECOVER: A Geotechnical Approach

NASA RECOVER
Keith T. Weber, GISP
Jeff May

What is RECOVER?

RECOVER: Rehabilitation Capability
 Convergence for Ecosystem Recovery

 NASA Applied Sciences Program sponsored project

RECOVER is a NASA Applied Sciences sponsored project. K. T. Weber (PI), J. Schnase (Co-PI) and M. Carroll (Co-PI), Goddard Space Flight Center

What is RECOVER?

- Customer-driven, Customer-centric*
- Decision Support System (DSS)
 - Rapid assembly of site-specific data
 - Delivered in customized GIS analysis environment
 - Wildfire focus

* Our "customer" is the USDI BLM, Idaho Dept. of Lands, and other wildfire management agencies (National Park Service, USFS, etc.)

Benefits of RECOVER

- Works seamlessly across all devices
- Reduces need for custom applications
- Platform for integration with other business systems
- Cross organizational collaboration
- · Ready to use content and services
- Content management system

How Does it Work?

Idaho State

AnyServer... AnyWhere*

That's Nice, but How does it do it?

- Three servers with "ArcGIS for Server" as their singular functional role
- Our newest server, is dedicated strictly to RECOVER

Let's Look Under the Hood

Pocatello

Under the Hood

- Dell PowerEdge R720 server
 - Windows Server 2012 R2
 - Two (2) 8-core Xeon E5 Processors (16 cores total)
 - 112 GB RAM
 - 3.5 TB Hard drive space
 - Dual redundant, hot swappable power supplies
 - Hardware RAID 5 fault tolerance
- Gigabit Ethernet

Data Architecture

- RECOVER covers the Western US
- Esri ArcGIS 10.3
 - File Geodatabase
 - Vector and raster data
 - Map Services and WFS
 - Image Services and WCS

Leveraging Best Available Solutions

- Mosaic dataset (MD) tips and tricks
 - Raster Server Functions (function chains)
 - Applied to elevation data (10m pixels)

Leveraging Best Available Solutions

- MD data cubes
 - 325 scenes for the Western US describing photosynthetic activity with NDVI (2001-present)
 - Stored in one MD
 - Served as one service (not 325 image services)
- This approach is used for NDVI and fPAR

Accessed through Definition Query

Leveraging Best Available Solutions

- Web Optimize the source data
 - Raster data types (32-bit vs 16-bit)
 - Hundreds of GB vs. tens of GB
 - Vector attribute tables
 - Apply coded value attribute domains
 - Short integer instead of Text

Why?

- Each service carries overhead
 - Minimizing the number of services running (active) increases performance
 - Speed is critical

Transform Data into Information

- Help your data speak to the user
 - Authoritative source data

Common sense Colormaps (raster)

Accepted color schemes (Map services and Layer files)

- "Make it mobile"
- "High-resolution is nice, but fast is critical"
 - NIFC
- "Drowning in Data, but still thirsting for Information"
 - RSAC

Assemble a Great Team

- Idea
- Plan
- Infrastructure
- Data

Pocatello

Questions?

RECOVER is a NASA Applied Sciences sponsored project. K. T. Weber (PI), J. Schnase (Co-PI) and M. Carroll (Co-PI), Goddard Space Flight Center

