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1. Abstract 
Understanding water dynamics in southeast Idaho is critical to planning and improving water management 
practices. Partner organizations that focus on water resource management, such as the Bureau of Land 
Management (BLM) and Idaho Department of Water Resources (IDWR), currently use the National 
Hydrography Dataset and expert knowledge to identify water bodies. This approach has been insufficient to 
meet all their needs because these datasets may not always reflect current ground conditions. This poses a risk 
for officials at the BLM and IDWR that could lead to ineffective use of their resources and inefficient 
management practices. To counter this shortcoming, this study was undertaken using NASA Earth 
observations within Google Earth Engine (GEE) and Esri’s ArcGIS to create a capability that would allow 
end-users to better identify and track water bodies within their management area. Known as the Surface 
Water Indicator Model (SWIM), this tool incorporated Landsat 8 imagery, Sentinel-2 imagery, multiple 
derived water indices, and topographic data into a Support Vector Machine (SVM) classifier. This study 
combines these data indices into a single tool to create an accurate surface water indicator. The resulting 
SWIM tool was created in both GEE and Esri’s ArcGIS to allow end-users their choice of platform. The 
SWIM tool will provide natural resource managers with current and seasonal surface water indication and 
more accurate data for land management. 
Keywords 
Remote sensing, surface water, Support Vector Machine, Sentinel-2, Landsat 8 OLI, water index, water 
resources, SWIM, Google Earth Engine. 

2. Introduction 
2.1 Background Information 
Previous research has identified surface water 
bodies through the use of water indices 
(McFeeters, 2013) or a classification algorithm 
(Wright & Gallant, 2007), but most have not 
combined the two methods. Often, any one of 
these methods alone, will incorrectly classify 
mountain shadows (Jin et al. 2013), urban asphalt 
(Feyisa et al. 2014), basaltic lava flows, or dark 
vegetation, (Jawak et al. 2015) as water. This study 
combines multiple water indices, as well as a 
classification algorithm into a single tool, to create 
a more accurate surface water indicator. This 
indicator expands upon Landsat’s extensive record 
of earth observation imagery, while also leveraging 
higher spatial resolution Sentinel-2 imagery as well. 
The scope of this study area spans from the east 
edge of Craters of the Moon National Monument 
to Bear Lake, Idaho. The landscape hosts 
abundant ecological diversity including large areas 
of basaltic lava flows, forested mountains, 
marshlands, reservoirs, ponds, rivers, and large 
areas of sporadic vegetation with bare soil. The tool produced during this study used imagery from 2016 for 
its initial testing, but was designed for broader partner use in seasonal water monitoring for surface water 
extent.  This study developed the Surface Water Indication Model (SWIM) tool, along with a database to 

Figure 1. Study area extent (red) of Southeastern Idaho Water 
Resources project. 
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identify current seasonal variability of surface water occurrence.  
 

2.2 Project Partners & Objectives 
Partners for this project included the Bureau of Land Management (BLM) - Pocatello Field Office, the Idaho 
Department of Water Resources (IDWR), and the NASA RECOVER Science Team at Idaho State 
University’s GIS Training and Research Center (ISU’s GIS TReC). Currently, end-user agencies (BLM and 
IDWR), are responsible for the management of surface water bodies to meet both urban and rural water 
needs, and to manage natural resources and wildlife habitat in southeast Idaho. Neither of our end-users are 
familiar with using satellite data to identify surface water features; instead they rely on spatial and non-spatial 
legacy data to identify areas that require special management practices. Therefore, satellite data was explored 
as an alternative source of information.  

2.3 Support Vector Machine (SVM) Classifier 
 A Support Vector Machine (SVM) classifier is a supervised 
machine-learning algorithm that helps describe, categorize, and 
generalize a particular dataset. This algorithm was originally 
developed for pattern recognition. It’s commonly used for 
image classification because of its strong theoretical foundation 
and experienced success (Cafarella et al. 2008). SVM aims to 
find the uniform convergence, or the “true” mean of spectral 
signatures of the labeled training points, creating a division line 
or classifier. The largest gap being between the classifier and the 
training data, is called trick optimization (Figure 2A). When the 
unlabeled pixel signatures are plotted on the chart, they will fall 
on either side of these class lines giving the predicted classification. 
SVM can also create hyperplanes when signatures become too 
complex and there is no way to create a simple line for the mean 
of a signature class (Figure 2B). Creating a hyperplane involves 
kernelling or transforming the data so that it becomes more 
uniform, allowing the hyperplane to be drawn into three 
dimensions (Burges, 1998). Normally, using SVM results in 
decreased computation time and increased memory requirements. 
However, a parallel SVM algorithm was implemented within 
Google Earth Engine (GEE) due to its memory capacity, which 
bypassed these downfalls. The ArcMap version currently does not 
have this capability, but users can define the number of processors 
used for the SVM computation. This does help negate some of the computation complexities. 

2.4 Hosting Platforms: Google Earth Engine (GEE) & Esri ArcGIS 
To increase SWIM usability, two platforms were used. GEE is a cloud-based, geospatial platform that 
processes satellite imagery and other global observation data. This platform integrates a variety of available 
public datasets, and uses Google’s server capacity to perform numerous geospatial processes. Additionally, 
work done on GEE can be integrated into a publicly available console and shared with other users. The Esri 
software provides multiple platforms for visualizing, analyzing, exploring spatial relationships, patterns, and 
trends. While this software is tailored toward vector data rather than raster processing, the software is widely 
used; therefore, making it ideal for disseminating the SWIM tool.  

3. Methodology 
This SWIM tool was created in both GEE using JavaScript (SWIM-GEE) and Esri’s ArcGIS using python 
scripting (SWIM-ArcGIS). This tool consists of four types of inputs: water indices, vegetation imagery, 
topographic layers, and secondary variables. These inputs were derived from Landsat 8 Operational Land 

Figure 2. Classifying with SVM where two 
classes (shown as circles for water and 

squares for non-water) are known to be 
present. A) The mean is shown with the line 

and has been trick optimized so that the 
distances from the closest point in each of 

the two groups will be farthest away. 
Wherever the unlabeled signatures fall will 
decide if it is water or not water. B) When 

the labeled training data has too much 
variation a transformation is implemented 

and a hyperplane (shown in blue) is created. 

http://giscenter.isu.edu/Research/Techpg/nasa_RECOVER/index.htm
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Imager (OLI) (US Geological Service, 2014) or Sentinel-2 multi-spectral instrument (MSI) imagery, along 
with Shuttle Radar Topography Mission (SRTM) data (NASA JPL., 2016). Both SWIM-GEE and SWIM-
ArcGIS, used surface reflectance values to calculate water indices, the same training points, and SVM 
classifier. Training points used for both platforms were created within the GEE platform, using 2016 Google 
imagery. Over 40 training polygons, covering a minimum of 10 pixels each, were specified for each of the five 
classes: basalt, open water, dark vegetation, urban, and sporadic vegetation and/or bare soil. The input layers 
and training points were used within a supervised classifier called a Support Vector Machine (SVM). This 
distinguished commonalities of each class, and labeled such signatures as one of the five classes. They were 
then classified as water body or non-water features. 

The SWIM-ArcGIS platform is similar to the SWIM-GEE platform. Nonetheless, it differs in its final 
calculations of the end product because SWIM-ArcGIS uses the Boolean sum of the water indices. The SVM 
classifier was used on each of the water indices to give a value of 1-water or 0-non-water; rather than all of 
the inputs at one time. Those raster layers were then totaled so that pixels were given a value of 0-5, 
producing a single raster. A value of 0 indicated the pixel was identified as non-water across all of the 
classified water indices, while 1 specified that one of the five classified water indices categorized the pixel as a 
water feature. A value of 2 designated that two of the five classified water indices indicated water and so 
forth. This provided a confidence rating for the ArcGIS results. For instance, if a pixel was classified as 5, 
then there was high likelihood that surface water was correctly identified for that pixel. A value of 1 meant 
that lower confidence water actually existed in that location. Though the same initial methods were 
implemented in each platform, a degree of confidence was not available from the SWIM-GEE result. Instead, 
a classified map with all five classes was produced. After the SWIM tool was created and tailored to run with 
30 and 10 meter resolution imagery, it was run across a time series of imagery throughout the 2015 and 2016 
water years to help differentiate intermittent and perennial water bodies. 
 

 
Figure 3. The SWIM tool consisted of three components- water indices (Modification of Normalized Difference Water 

Index (MNDWI), multi-band spectral relationship near infrared (MBSRN), multi-band spectral relationship visible 
(MBSRV), Automated Water Extent with Shadow (AWEsh)), topography, and secondary variables (soil adjusted 

vegetation index (SAVI), the iron ratio, and thermal band 10) derived from Landsat 8 OLI/TIRS imagery and SRTM 
data. These three components were then added to a classifier within two separate platforms in order to identify surface 

water bodies, these results then underwent validation. 
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3.1 Data Acquisition 

Two types of data, topography and multi-spectral imagery, were used in the SWIM tool. The multi-spectral 
data was provided by Landsat 8 OLI & TIRS (paths 39, 38 & rows 30, 31) and by Sentinel-2 MSI. The 
surface reflectance was recorded at 30 meter and 100 meter spatial resolution for Landsat, and 10 meter 
spatial resolution for Sentinel. Imagery was collected between June of 2016 and September of 2016. A path 
refers to how a satellite collects data by running north to south, and a row is the east to west position of each 
image (Irons, 2016). For SWIM-GEE, Landsat scenes were used from the available USGS top of the 
atmosphere (TOA) reflectance repository in GEE. For SWIM-ArcGIS, Landsat scenes were downloaded 
from USGS Earth Explorer for use in ArcGIS. The topography data came from the Shuttle Radar 
Topography Mission (SRTM) digital elevation dataset at 10 and 30 meter spatial resolution. This was found in 
the GEE repository for SWIM-GEE, or was downloaded from the US Department of Agriculture geospatial 
data gateway being used in ArcGIS for the SWIM-ArcGIS tool. Finally, field verification points will be 
provided by BLM partners after the summer of 2017. 

3.2 Data Processing & Analysis 
3.2.1 Water Indices 
Water indices were incorporated into the classification as a means to better locate surface water within the 
study area. Different types of water indices exist and each have some margin of error. For example, in some 
instances irrigated croplands may be falsely identified as similar to riparian environment (Donchyts et al. 
2016). To reduce error, several water indices were used in this classification. 
Modified Normalized Difference Water Index 
The modified normalized difference water index (MNDWI) differs from the original normalized difference 
water index (NDWI) as it was derived from the green and middle shortwave infrared (SWIR1) bands rather 
than green and near infrared (NIR) bands. The NDWI often overestimates the amount of water due to 
spectral noise caused by vegetation and soil. The MNDWI is able to remove the signal of vegetation and soil, 
while more effectively detecting open water bodies relative to NDWI (Xu, 2006). Similar to a normal NDWI, 
the MNDWI identifies changes in liquid water content of vegetation canopies. MNDWI values range from -
1.0 to 1.0 and the index maximizes the reflectance values of water and also minimizes vegetation and soil 
values. As water is rarely ever crystal clear, MNDWI is highly sensitive to fluctuations in water turbidity, yet 
identifies more water signatures than NDWI. MNDWI is more vulnerable than NDWI to false positives 
normally caused shadows due to the hills and clouds (Donchyts et al. 2016). 
. 

A. NDWI=
ρgreen- ρNIR

ρgreen+ ρNIR
 

B. MNDWI=
ρgreen- ρSWIR1

ρgreen+ ρSWIR1
 

Equation 1. NDWI (A) and MNDWI (B) equation where ρ is the reflectance value of the spectral bands (i.e. green). 

Multi-band Spectral Relationships 
The multi-band spectral relationship near infrared (MBSRN) index is calculated by combining the NIR and 
SWIR1 bands. All while the multi-band spectral relationship visible (MBSRV) index is derived from the green 
and red bands. The MBSRN band combination was used because these spectral ranges are absorbed by water, 
making water features appear dark. When the MBSRV value is greater than the MBSRN value, the pixel is 
more likely to contain more water than vegetation (Jones & Starbuck, 2015). Thus, creating a threshold. 
These calculations comprise three of the bands in the SWIM stack. 

A. MBSRV =  ρgreen+ ρred 

B. MBSRN =  ρNIR+ ρSWIR1 
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C. MBSRthreshold = MBSRV > MBSRN 
Equation 2 Calculations for MBSRV (A), MBSRN (B) and the threshold between the MBSR values (C) where ρ 

is the reflectance value of the spectral bands (i.e. green). 

Automated Water Extent with Shadow (AWEsh) 
Consisting of the Blue, Green, and SWIR 2 bands, while including MBSRN (Equations 2B), this equation is a 
further improvement on the distinction of shadow areas and dark surfaces. AWEsh builds upon pre-existing 
water indices using a multi-band index rather than relying on dual-band ratios or single-band thresholding. 
Through band differencing, addition, and applying varying coefficients, the index’s primary goal is to 
maximize separation between water and non-water dark pixels (Feyisa et al. 2014). The application of AWEsh 
in this study was intended for when shadows present sources of accuracy loss. 
 

AWEsh = ρblue+ �2.5ρgreen�+�-1.5(ρNIR+ρSWIR1)�+�-0.25ρSWIR2� 

Equation 3 Calculation for AWEsh index, where ρ is the reflectance value of the spectral bands (i.e. green) 

3.2.3 Topographic variables 
A 30 meter digital surface model (DSM) was chosen to match the 30 meter spatial resolution of Landsat 8 
OLI data; while the 10 meter DSM was chosen to be use with Sentinel-2 MSI data. The DSM were used in 
SWIM to add layers of elevation, slope, and aspect. These topography layers were included to help separate 
possible false positives on steep slopes or dry hill faces. 

3.2.4 Agriculture 
When choosing land cover type for the classes, it was difficult to determine a class type for agriculture. Crops 
that were in the process of rotation could have been freshly watered or recently harvested when the satellite 
acquired the imagery. Originally, agricultural crops would sometimes be labeled as dark vegetation or mixed 
water, and the dead and dry crops would be mislabeled as urban or bare soil. This was counteracted using 
several vegetation detection methods. A false color image was created to better differentiate variability in crop 
areas. Likewise, an agriculture band combination within Sentinel-2 was used to detect areas that were most 
likely to be crops or regenerating agricultural land. 

3.2.5 Secondary Variables 
Soil Adjusted Vegetation Index (SAVI) 
The Normalized Difference Vegetation Index (NDVI) was considered as an indicator of live green vegetation 
within a pixel as it might indicate a water source. MSAVI was considered, but due to short duration of 
research time, we weren’t able to effectively integrate the code.  The SAVI equation builds upon the NDVI 
equation by introducing a constant to adjust for soil reflectance. That constant can be chosen based on the 
type of soil to vegetation mixtures that one would expect in a given study site, ranging from 0 for dense 
vegetation, to 1 for sparse vegetation with more bare soil than green vegetation (Huete, 1988).  In this project 
the constant 0.5 was used to represent an even mixture of bare soil to vegetation. The study area has a large 
amount of bare soil with sporadic vegetation, therefore, vegetation indices would likely increase model 
proficiency. 
    

A. NDVI=
ρNIR-ρred
ρNIR+ρred

 

B. SAVI= � 
ρNIR-ρred

ρNIR+ρred+L
 � (1+L) 

Equation 4 Calculations for NDVI (A) and for SAVI (B), where ρ is the reflectance value of the spectral bands 
(i.e. green) and L represents a constant known as the soil brightness correction factor. 

Iron Ratio & Thermal Band 
Two factors were used to distinguish water from basalt. Basalt is a feature that is commonly misidentified as 
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water. First, basalt was designated as one of the training classes in the SVM classifier. Second, the ratio of the 
red band over the green band assists in distinguishing ferric iron (Kalinowski & Oliver, 2004). Within SWIM, 
this is often referred to as the iron ratio. 
 

ferric iron = 
ρred

ρgreen
 

Equation 5 Calculation for the iron ratio, where ρ is the reflectance value of the spectral bands (i.e. green). 

3.2.1 Error Assesment 
To test the level of accuracy of the final classification results, an error matrix was used. The classifier was 
trained with a randomly selected subset of 60 percent of the training points. The error matrix in GEE used 
the remaining 40 percent of the training points as validation sites. This process was run three times with a 
new 60/40 randomization each time. The average overall accuracy of the three error matrices was reported in 
GEE’s console. The error analysis process was repeated in ArcGIS for comparison. Within ArcGIS 150, 
random points were generated so that 30 points fell inside each of the five classes. These points were then 
compared to aerial imagery from the 2015 National Agriculture Imagery Program (NAIP).  

4. Results & Discussion 
Advanced users have the ability to customize SWIM within GEE, while Esri’s ArcMap provides accessibility 
for users who are already familiar with Esri software. However, GEE is limited by its script-based interface 
while Esri provides a more common Graphical User Interface (GUI). Gee requires users to make JavaScript 
based edits in order to use SWIM. A GUI may be more intuitive, but a script based interface enables a higher 
degree of modification. The Esri suite is tailored toward vector data rather than raster processing; although 
the software is widely used and therefore ideal for disseminating the SWIM tool. The Esri ArcMap software 
allows production of a GUI; providing a more intuitive interface for users unfamiliar with programming 
technology. Unfortunately, the overall ability of the SWIM tool varied from the GEE developed SWIM tool. 
This was due to the available classifiers and computation performance differences across the two platforms. 
The overall accuracy of the SWIM-GEE platform model was 68% (Table 1) and 97% (Table 2) when 
calculated in GEE and ArcMap, respectively. The independent validation created within ArcGIS reported an 
accuracy of 80% for correctly identifying water. SWIM-ArcGIS had an overall accuracy of 96% and due to 
differences in SWIM methods across platforms, this should be considered the same accuracy for overall water 
identification.  

Intermittent water bodies were successfully identified using two time-steps for 2016 imagery from Sentinel-2 
and four time-steps for 2016 imagery from Landsat 8. The spatial extent of the intermittent streams were 
noticeably dependent on how the training and validation points were split. For that reason, results for 
intermittent streams included a confidence rating (Figure 5). When results from the SWIM-GEE (Figure 4a) 
and SWIM-ArcGIS (Figure 4b) platforms were compared, they agreed well on all “non-water” classes, but 
there was some variation regarding water body detection (Figure 6). Spatial resolution played a large role in 
determining if river connectivity existed, and also in defining the spatial boundaries of the surface water 
bodies (Figure 7). In addition, there were some discrepancies of detecting water that may be due to two 
reasons: 1) differences of when the Landsat 8 acquired imagery and when Sentinel-2 collected imagery, and 2) 
differences between sensor bandwidth ranges and the ration of signal to noise as spatial resolution decreases 
(Figure 8).  
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4.1 Accuracy 
The overall high accuracy of the GEE validation may be due to the high number of validation points, 11,719 
pixels, while the ArcGIS independent validation consisted of only 150 pixels. The GEE algorithm for 
performing these validation calculations is not available for public review and therefore could be redundantly 
included training points in the validation assessment. An 80% accuracy for water indicates the model was 
successful in identifying surface water bodies. The overall accuracy was low due to mis-identifying non-water 
classes (Table 1). This is not concerning, because the mis-identified pixels were not regularly confused with 
water. It is also expected that non-water classes would have trouble during classification; since the inputs for 
the SWIM tool consisted of water indices and not variables specifically chosen to help identify non-water 
classes.  

Table 1. Independent test of GEE-SWIM using stratified random sampling to determine validation points and NAIP 
2015 imagery to determine accuracy. 

Classes Basalt Open Water Dark 
Vegetation Urban 

Bare Soil/ 
Sporadic 

Vegetation 

User 
Accuracy 

Basalt 17 2 3 5 1 61% 
Open Water 3 24 0 3 0 80% 
Dark Vegetation 0 2 21 0 2 84% 
Urban 0 2 0 16 3 76% 
Bare Soil/Sporadic 
Vegetation 10 0 6 6 24 52% 

Producer Accuracy 57% 80% 70% 53% 80%  

Table 2. Error matrix for overall accuracy of the SWIM tool when using the GEE platform. Each class was verified to 
determine the likelihood of the model detecting that particular feature. The average accuracy of detecting water was 

83%. 

Classes Basalt Open Water Dark 
Vegetation Urban 

Bare Soil/ 
Sporadic 

Vegetation 
Accuracy 

Basalt 1400 4 4 1 3 99% 
Open Water 0 2631 0 0 0 100% 
Dark Vegetation 0 0 1252 1 220 85% 
Urban 0 1 9 549 0 98% 
Bare Soil/Sporadic 
Vegetation 54 0 0 1 5589 99% 

Accuracy 96% 100% 99% 99% 96%  

4.3 Comparison of platform performance in SWIM 

Figure 4b shows those pixels that have at least a level two confidence of water displayed in blue, (the reader 
may recall, this means at least two water indices identified the pixel as water). A visual comparison illustrated 
that the SWIM-ArcGIS map matches the SWIM-GEE map for nearly all major water bodies. However, some 
places such as the northern part of the American Falls Reservoir do not appear in SWIM-ArcGIS (Figure 4b), 
while these features do show in SWIM-GEE results (Figure 4a).  
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Figure 4.  Overview of the study area with the water bodies identified by the SWIM-GEE tool while using JavaScript in 
GEE. b) An overview of the study area and the water bodies the SWIM-ArcGIS tool identified using Python in ArcGIS 

 
Most of the disagreement between the ArcGIS and GEE platform were due to SWIM-ArcGIS classifying 
pixels as “non-water” when SWIM-GEE classified the pixel as “water”. This accounted for 3.48% of the total 
4.95% disagreement (Table 3). This may have been caused by a combination of factors. The classifier, even 
though SVM was the chosen classifier in both platforms, may have operated differently within each platform. 
In addition, the last steps in SWIM-ArcGIS converted all results into a binary “water” versus “non-water” 
layer. 

a) 
b) 
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Figure 5. SWIM-ArcGIS’s results produced in ArcMap were compared to the SWIM-GEE product with an agriculture 
mask applied. The figure displays pixels that were classified as water by the SWIM-ArcGIS and non-water as SWIM-
GEE in red; orange shows pixels that SWIM -ArcGIS classified non-water and SWIM-GEE classified as water pixels; 

areas where both models classified pixels as non-water are shown in gray and water in blue. 

Table 3. Summary of the areas (km2) compared between SWIM Platforms 

ArcGIS / GEE 

Area 

KM2 Percent 

No Water 2,5095 94% 
Water 333 1% 
No Water / Water 930 4% 
Water / No Water 394 1% 
Total Agreement 2,5428 95% 
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Total Disagreement 1,325 5% 
 

4.2 Identifying Intermittent Water Bodies 

 
Figure 6. Likelihood of SWIM tool correctly identifying intermittent water bodies. 

In Figure 5, pixels identified as intermittent between July 06, 2016 and August 24, 2016 were given   

Sentinel-2 not only provided better resolution imagery, but allowed for more accurate classifications of dry 
and wet season images. These images were overlaid together to create seasonality maps indicating the 
presence of perennial and intermittent water bodies. After creating the seasonality layers, these layers were 
used to create a likelihood map to more precisely show the presence of each water body type (Figure 5). 
Intermittent water bodies were identified as likely intermittent if there were no change between the July 26 
and August 24, 2016 imagery for all three time periods used in the classifier. Possibly intermittent water 
bodies were those that did not consistently detect an intermittent water body across all three classification 
time periods, while unlikely intermittent describes those results where water was identified during only one of 
the three time periods analyzed. There were only a few classifications that created an unlikely intermittent 
water body and these were likely caused by shallow water bodies or those with increased sedimentation which 
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may have caused confusion with the signatures of the wet soil, exposed substrate, and water classes.  

4.4 GEE-SWIM comparison of resolutions across Landsat 8 and Sentinel-2 

For the July 2016 sensor 
comparison (Figure 7) we found 
strong agreement between non-
water features. The large perennial 
surface water bodies appear 
constant across seasons. However, 
there was substantial disagreement 
water body edges between Sentinel-
2 and Landsat 8. Figure 7 shows 
Sentinel-2 water vs. Landsat 8 non-
water features especially in the inset 
imagery. Landsat 8 water vs. 
Sentenel-2 non-water seems to be 
more sporadic and shows water 
further way from large water 
bodies. This class is less prevalent 
during the wet season (Figure 8) 
than the dry season (Figure 7). The 
inset map of Figure 7 and Figure 8 
shows that the disagreement of 
non-water / water (Sentinel-2 / 
Landsat) in the dry season is 
reversed to water / non-water 
(Sentinel-2 / Landsat) during the 
wet season. In general resolution 
can account for platform disagreement when the disagreement does not cover a large spatial extent and is 
located around agreed upon water bodies.  The differences across platforms could also be the result of the 
differences between the wavelengths covered by the NIR band in Sentinel-2 and Landsat 8 platforms. 
Mandanici and Bitelli (2016) found that Landsat 8’s near-infrared (NIR) band most closely correlates with 
Sentinel-2s’ red edge band over the larger NIR wavelength. Therefore, it may be helpful to adopt band 8a, red 
edge, instead of band 8, NIR, currently used in the SWIM model. Unfortunately the red edge band increases 
the bands spatial resolution from 10 meters to 20 meters and this is the reason the original NIR was used in 
this study. Previous research also found that correlations are decreased between NDWI calculated with each 
platform in calm water, most likely dues to low reflectance of water which increases the signal-to-noise ratio 
(Mandanici and Bitelli, 2016). However, it is likely that turbid water sources were more likely to cause 
agreeance across platforms because turbidity produces higher and more homogeneous reflectance values 
(Mandanici and Bitelli, 2016). Disagreement can also be caused by temporal collection differences. The dates 
chosen for Sentinal-2 and Landsat 8 imagery were limited by cloud cover and caused collection dates across 
platforms to differ by up-to a week. It is well known, that a sensors’ recorded signal is dependent on the 
radiance coming from the surface and atmospheric effects. A longer time step between the acquisitions may 
increase the differences in radiometry because of differences in atmosphere and surface reflection conditions. 
Overall, the Sentinal-2 data was better at picking up the smaller details of rivers and streams while defining 
larger water bodies and its outlets. Landsat 8 data on the other hand seemed to be able to differentiate 
possible water sites a little better.  

Figure 7. Comparison of Sentinel-2 imagery and Landsat 8 imagery 
captured during the month of August in 2016 after all of the snowpack has 

melted and has mostly infiltrated into groundwater reserves. 
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Figure 8. Comparison of Sentinel-2 imagery and Landsat 8 imagery captured during the month of July in 2016 when 

snowpack, the main source of surface water in Idaho, is melting. 

 
4.5 Future Work 
Stream and river fragmentation were prevalent throughout all of the classifications. This is because many of 
the streams and rivers in Southeast Idaho are relatively small and do not reflect enough radiance even at 10 
meter pixel resolution. In order to correct this issue, an inclusion of a path-tracking algorithm can be applied 
to reduce fragmentation and produce continuity of the streams. Furthermore, using higher resolution 
imagery, such as WorldView 3 at 1.24 m spatial resolution, may also be beneficial for a more accurate 
detection of these water bodies. Additionally, the same methodologies can be used in a study area outside of 
Southeast Idaho, expanding to test water identification outside the semiarid high desert environment.  

5. Conclusions 
This project successfully created a Surface Water Indication Model in both GEE and ArcMap. A Support 
Vector Machine (SVM) classified the water indices, topographic data, and secondary variables. The water 
indices were comprised of the AWEsh, MNDWI, SAVI, MBSRV, MBSRN, and iron ratio equations, as well 
as the thermal band (B10), which was derived using Landsat 8 Operational Land Imager (OLI) Thermal 
Infrared Sensor (TIRS). Topographic information, consisting of slope, aspect, and elevation, was extracted 
from the Shuttle Radar Topography Mission (SRTM). The SVM was trained with over 500 training pixels per 
class to produce data layers with six cover classes: basalt, open water, dark vegetation, urban, sporadic 
vegetation/bare soil, and mixed water. Leveraging several water indices, instead of just one, enabled the 
classifier to better predict and identify water. Error matrices showed that classification accuracy for the water 
class was 80%. However, distinguishing between non-water classes proved difficult for the classifier. This 
may indicate that SWIM-GEE’s performance could be better improved by including non-water thresholds 
within the model.  
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7. Glossary 
Closed Canopy - created as a class to highlight areas that may be obscuring water signatures, for instance 
when a forest canopy completely covers a stream. So when an area is classified at “Closed Canopy” it could 
indicated water is nearby, unless of course it is covering a hilltop rather than a draw.  
Exposed Substrate- excludes soil, but includes exposed solid rock and features like gravel that is found 
mixed throughout all sagebrush steppe habitat. So when you look at this confusion matrix “10” of the 
validation checks that were visually look like sagebrush steppe may have actually been classified correctly as 
exposed substrate  
Indices – remote sensing-derived indexes  
Intermittent – water body that normally ceases flowing or dry up for months in a year 
MODIS – MODerate resolution Imaging Spectroradiometer: instrument that captures data in 36 bands 
onboard Terra Satellite.  
Moraine – A mass of rocks and sediment carried down and deposited by a glacier, typically as ridges at its 
edges or extremity 
Open Water - easily detected water 
Perennial – water body that keeps full or flowing all year or most of the year 
Raster – made up of matrix cells that contain value; are organized in row and columns  
Sagebrush Steppe or Soil - this represents bare earth or vegetation that is sparse which indicates a lack of 
available water  
Urban - are areas like buildings or large parking areas 
Vector – data representation of world features in points, lines, and polygons  
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9. Appendices 
9.1 Dynamic Surface Water Extent 
9.1.1 SWIM results versus the USGS Dynamic Surface Water Extent product (DSWE) 
The U.S. Geological Survey (USGS) is in the process of creating the Dynamic Surface Water Extent (DSWE) 
product with the aim of providing increased spatial and temporal monitoring of the dynamics of non-ocean 
surface water extents (Jones & Starbuck, 2015). These products are being produced to include the entire 
archived and currently available Landsat imagery. An early look at water indices, as well as the provisional 
Dynamic Surface Water Extent (DSWE) from the U.S. Geological Survey, did seem to indicate that basaltic 
rock often gave false water signatures (Jones & Starbuck, 2015). This could be problematic, since it is 
common to find large basalt formations and smaller rock outcrops in southeastern Idaho. The provisional 
data DSWE products that matched the project’s study area and period were compared with the results 
produced by the SWIM tool. While the study area is just partially in path 39 and row 30, the full Landsat 
scene was included during the comparison in order to maximize the evaluation. Prior to comparison, an 
agriculture mask produced from the 2011 National Land Cover Dataset (NLCD) was applied to the SWIM-
GEE results in such a way that when the two results were compared the mask was also applied to the DSWE 
results. After this mask was applied, the SWIM-GEE no water, open water, and mixed water classes were 
compared to the four classes produced in DSWE, no water, high confidence of water, moderate confidence 
of water, and partial surface water. The classes for each of these results were generalized, so  when a pixel was 
not classified the same between the two results, areas classified with a high confidence level or said to be 
partial water were shown as water. The USGS is also responsible for the National Hydrography Dataset 
(NHD) which was also used to compare with the SWIM results. 
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Figure 9. The SWIM-GEE results were compared to the NHD product for the full project extent with an agriculture 
mask applied. The figure displays pixels that were classified as water by the SWIM-ArcGIS and non-water as SWIM-
GEE in red; orange shows pixels that SWIM-ArcGIS classified non-water and SWIM-GEE classified as water pixels; 

areas where both models classified pixels as non-water are shown in gray and water in blue. 

The total disagreement, 19.34%, for the NHD-SWIM comparison is the highest seen out of the three 
comparisons performed in this project. This disagreement does have founding when visual checks are 
completed on areas NHD has identified as water and SWIM-GEE does not (purple of Figure 13). However, 
some of the disagreements could be explained with differences in boundaries. For instance, the NHD does 
have a riparian areas identified in its database (blue circle Figure 13), however, it is shown in red in Figure 13. 
This is, most likely because SWIM identified a greater boundary than the boundary recorded in NHD. 
 

Table 4. Summary of the areas (km2) compared between NHD and SWIM classes. 

NHD / SWIM-GEE 

Area 

Square 
kilometer Percentage 

No Water 34,053 79% 
No Water / Water 8,162 19% 
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Water / No Water 201 0% 
Water 820 2% 
Total Agreement 34,873 81% 
Total Disagreement 8,363 19% 

 
9.1.2 SWIM results versus an initial DSWE product 
As shown in Table 4 most of the 4.99% disagreement between DSWE and SWIM-GEE was due to DSWE 
classifying basalt as water and SWIM-GEE classifying non-water as water, where 2.15 % of the 2.54% of the 
“No Water / Water” comparison is due to partial water classification rather than open water. 

 
Figure 10. The SWIM-GEE results were compared to the DSWE product for the Landsat scene 39/30 (path/row) and an agriculture 

mask was applied. The figure displays pixels that were classified as water with DSWE and non-water with SWIM-GEE (red); pixels that 
DSWE classified as non-water but SWIM-GEE classified as water (orange); and areas that both models classified as non-water (gray), 

partial water (green), and water (blue). 
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Table 5 Summary of the areas (km2) compared between DSWE and SWIM classes. 

DSWE / SWIM 

Area 

KM2 Percent 

Water / No water 872 2% 
No Water / Water 900 3% 
Partial Water 75 0% 
Water 398 1% 
No Water 3,3251 94% 
Total Agreeance 3,3724 95% 
Total Disagreement 1,772 5% 

 
 

9.2 Error Matrices 

Table 6. Error Matrix for the first out of three classifications completed and accuracy calculated in GEE. 

Classes Basalt Open Water Dark 
Vegetation Urban 

Bare Soil/ 
Sporadic 

Vegetation 
Mixed 
Water Accuracy 

Basalt 159 0 2 0 3 10 91% 
Open Water 0 190 0 0 0 4 98% 
Dark Vegetation 5 2 151 0 6 12 86% 
Urban 9 0 1 117 8 41 66% 
Bare Soil / Sporadic 
Vegetation 2 0 10 15 135 4 81% 
Mixed Water 12 1 14 10 1 132 78% 
Accuracy 85% 98% 85% 82% 88% 65% 84% 

 

Table 7. Error Matrix for the second out of three classifications completed and accuracy calculated in GEE. 

Classes Basalt Open Water Dark 
Vegetation Urban 

Bare Soil/ 
Sporadic 

Vegetation 
Mixed 
Water Accuracy 

Basalt 141 0 3 3 1 2 94% 
Open Water 0 159 0 0 0 1 99% 
Dark Vegetation 6 2 156 1 6 5 89% 
Urban 11 0 0 137 18 9 78% 
Bare Soil / Sporadic 
Vegetation 8 0 14 3 130 0 84% 
Mixed Water 6 21 23 24 6 97 55% 
Accuracy 82% 87% 80% 82% 81% 85% 83% 
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Table 8. Error Matrix for the third out of three classifications completed and accuracy calculated in GEE. 

Classes Basalt Open Water Dark 
Vegetation Urban 

Bare Soil/ 
Sporadic 

Vegetation 
Mixed 
Water Accuracy 

Basalt 141 0 7 0 7 2 90% 
Open Water 0 161 0 0 0 2 99% 
Dark Vegetation 2 1 157 0 4 16 87% 
Urban 19 0 1 128 4 35 68% 
Bare Soil / Sporadic 
Vegetation 2 1 11 16 135 3 80% 
Mixed Water 6 7 26 18 2 124 68% 
Accuracy 83% 95% 78% 79% 89% 68% 82% 

 

Table 9. Error Matrix for the first out of three classifications completed in GEE and accuracy calculated in ArcMap. 

Classes Basalt Open Water Dark 
Vegetation Urban 

Bare Soil/ 
Sporadic 

Vegetation 
Mixed 
Water Accuracy 

Basalt 159 0 2 0 3 10 91% 
Open Water 0 190 0 0 0 4 98% 
Dark Vegetation 5 2 151 0 6 12 86% 
Urban 9 0 1 117 8 41 66% 
Bare Soil / Sporadic 
Vegetation 2 0 10 15 135 4 81% 
Mixed Water 12 1 14 10 1 132 78% 
Accuracy 85% 98% 85% 82% 88% 65% 84% 

Table 10. Error Matrix for the second out of three classifications completed in GEE and accuracy calculated in ArcMap. 

Classes Basalt Open Water Dark 
Vegetation Urban 

Bare Soil/ 
Sporadic 

Vegetation 
Mixed 
Water Accuracy 

Basalt 141 0 3 3 1 2 94% 
Open Water 0 159 0 0 0 1 99% 
Dark Vegetation 6 2 156 1 6 5 89% 
Urban 11 0 0 137 18 9 78% 
Bare Soil / Sporadic 
Vegetation 8 0 14 3 130 0 84% 
Mixed Water 6 21 23 24 6 97 55% 
Accuracy 82% 87% 80% 82% 81% 85% 83% 

 

Table 11. Error Matrix for the third out of three classifications completed in GEE and accuracy calculated in ArcMap. 

Classes Basalt Open Water Dark Urban Bare Soil/ Mixed Accuracy 
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Vegetation Sporadic 
Vegetation 

Water 

Basalt 141 0 7 0 7 2 90% 
Open Water 0 161 0 0 0 2 99% 
Dark Vegetation 2 1 157 0 4 16 87% 
Urban 19 0 1 128 4 35 68% 
Bare Soil / Sporadic 
Vegetation 2 1 11 16 135 3 80% 

Mixed Water 6 7 26 18 2 124 68% 
Accuracy 83% 95% 78% 79% 89% 68% 82% 
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