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Developing Fire Susceptibility Models Using Remote Sensing to Identify 

Wildlife Habitats in the Sagebrush-Steppe Ecosystem Threatened by 

Wildfires 

Wildfires can be disastrous for declining, threatened, or endangered wildlife species. 

Encroachment of non-native annual grasses such as cheatgrass or woody-vegetation 

such as juniper have increased fuel loads, intensified wildfire severity, and altered fire 

regimes throughout the Great Basin and Intermountain West. This project partnered 

with Craters of the Moon National Monument and Preserve (CRMO) and the Bureau of 

Land Management (BLM) in Idaho to identify wildlife habitats with increased 

susceptibility to wildfires due to fuel loads. This project is unique in its consideration 

of kipukas, islands of wildlife habitats found throughout lava formations. Wildlife 

habitats of the diminished Greater Sage-grouse (GRSG) (Centrocercus uraphasignus) 

and declining mule deer (Odocoileus hemionus) were included in the study. Sagebrush-

steppe is a resilient ecosystem and is able to handle many different environmental 

extremes but wildfires can be disastrous to the flora and as a result the fauna because it 

takes so long to re-establish. This project leveraged Landsat-8 Operational Land 

Imagery (OLI) data from June 2015, Sentinel-2 data from June 2016, fuel loads 

measured in tons per acre, and topographic variables to produce four threatened habitat 

wildfire susceptibility models. One of the main objectives of the project was to 

investigate the effect of differing spatial resolutions on the accuracy of the output 

models. Weightings from expert opinion and industry standards were applied to model 

variables to discern fire behaviour and habitat vulnerability. The burned area from the 

Timbered Dome fire of July 4, 2016 was analyzed to serve as validation for the 

effectiveness of the models and reinforces the need for continued monitoring of 

habitats that are highly susceptible to wildfires. Methods developed provided decision 

makers with new and effective ways to monitor remote areas and threatened habitats. 

Keywords: mule deer; Greater Sage-grouse; Landsat-8 OLI; Sentinel-2; wildfire; 
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1. Introduction 

1.1. Background  

Many species such as the Greater Sage-grouse (Centrocercus urophasianus) and mule deer 



(Odocoileus Hemionus) depend on the sagebrush-steppe ecosystem to provide shelter, food, 

and rearing grounds. Both cheatgrass (Bromus tectorum) and juniper (Juniperus communis) 

are primary drivers of change in native semi-arid savanna ecosystems and play a large role in 

changing fire regimes. Sagebrush-steppe is a resilient ecosystem and known to have plant 

populations as old as 150 years. This ecosystem is adapted to fires; historically, wildfires would 

occur in long intervals from decades to hundreds of years allowing native vegetation to re-

establish. Though fire often plays an essential role in wildland ecology and helps maintain 

natural processes, too many occurrences of wildfires can induce a loss of biodiversity, disrupt 

ecosystems, and deplete resources (Oppenheimer, 2012; Whisenant, 1990). Throughout our 

study region, in Eastern Idaho, there exists habitat designations for Greater Sage-grouse 

(GRSG), a species that is currently threatened, as well as mule deer, a keystone management 

species. Mule deer are a common big game species serving roughly 150,000 hunters throughout 

Idaho. In 2006, the Idaho Department of Fish and Game (IDFG) gathered $6.3 million in mule 

deer license and tag sales making it up 20% of the overall revenues of total license/tag revenues 

(American et al., 2008).  

Population declines of the Greater Sage-grouse and mule deer began in the 1960s and 

1990s, respectively (Aldridge et al., 2008; & Bishop et al., 2009). Two primary threats to the 

sustainability of Greater sage-grouse are wildfire and invasive annual grasses encroaching into 

low- to mid-elevation sagebrush (Ielmin et al., 2015). Other disturbance factors included 

improper grazing, development, and other anthropogenic activities can increase the spread of 

these species (Anderson et al., 2015; Ielmini et al., 2015; & Bishop et al., 2009). These 

disturbances interact with each other to create a complex system of positive feedbacks. For 

instance, cheatgrass, an exotic annual grass is able to quickly establish in disturbed areas and 

creates a positive feedback cycle with wildland fire, resulting in landscapes that burn more 

frequently and become increasingly dominated by this invasive plant (Balch et al., 2013; and 



Brooks et al., 2010). This feedback loop has caused a decrease in the sagebrush-steppe spatial 

range causing difficulty for species reliant on the ecosystem. The Secretary of Interior issued 

Executive Order 3336 on January 6th, 2015 that called for thorough science-based analysis of 

the sagebrush-steppe landscape (Ielmini et al., 2015). This order aims to help land managers 

address landscape scale issues like the increasing frequency of wildfires and declining habitats 

throughout the Great Basin (DOI, 2015). This project helps these initiatives through the use of 

remote sensing technologies to identify habitat areas more susceptible to wildfires discovering 

locations where if a fire were to occur how the fire could affect habitats. 

The study is unique in its consideration of fire susceptibility of the basalt flows and kipukas, 

islands of vegetation encapsulated by lava flows found at Craters of the Moon National 

Monument and Preserve (CRMO). This roughly 753,000 acre park is home to over 3,000 

different animal species and 93 vegetation communities’. CRMO is often excluded from fire 

susceptibility studies under the assumption there are little to no burnable vegetation within the 

lava flows and it is unlikely for fire to spread through the sparse fuels and across natural lava 

breaks made by basalt (Arabas et al., 2006). However, CRMO experiences an average of four 

to five fires per year and in recent years has experienced drought conditions that have increased 

fire access across historical lava flows due to excessively dry vegetation found throughout the 

basalt (Todd Stefanic, personal communication, June 28, 2016).  

2.2 Study Area 

This study focuses on CRMO found in eastern Idaho’s semi-arid savanna rangelands. This 

landscape consists of volcanic derived substrate, such as basalt and granite, a result of a hotspot 

activity from 16 million years ago that traced a path across Idaho to its present-day location in 

Yellowstone National Park (Smith & Braile, 1994). This region encompasses the Snake River 

Plain a 70 mile (110 km) channel that has crosscut the basin and range patterns of the Rocky 



Mountains and has significantly altered the climate of this region. The Snake River flows west 

from Yellowstone through the desiccated countryside and sustains a tremendous diversity of 

plant and animal species.  

2.3 Fire Susceptibility 

 Semi-arid shrubland environments lead to potential severe and widespread wildfires (Cruz et 

al., 2013). Spatial patterns of wildfires are controlled by complex interactions of ignition 

sources, vegetation, topography, and weather conditions (Mermoz et al., 2005). This study 

excluded weather conditions and focuses instead on intrinsic characteristics such as topography 

and vegetation type. Topography is an important control of fire spread because radiant energy 

is transferred easily in the direction of the higher slopes (Rothermal, 1983). Vegetation type 

affects fuel loading and moisture all of which can affect how fire spreads. Pristine sagebrush-

steppe ecosystems are increasingly rare but can be found within some of the kipuka’s at Craters. 

Unfortunately, many areas across this greater ecosystem are experiencing encroachment by 

junipers and noxious grasses, some of which increase wildfire susceptibility. These changes to 

the sagebrush-steppe ecosystems also decrease habitat suitability and as wildfires occur native 

vegetation is outcompeted by encroaching or invasive vegetation like cheatgrass and other 

noxious species. 

2.4 Project Partners 

Our project addressed NASA’s Disaster Application area partnering with Craters of the Moon 

National Monument and Preserve (CRMO) and the Bureau of Land Management (BLM) to 

provide information on wildfire susceptibility which will be used to prioritize wildfire 

mitigation efforts in Greater Sage-grouse and mule deer habitats. Currently the CRMO relies 

on outside resources to provide fire susceptibility information and these resources are limited. 

Leveraging Earth observations provides Craters with a way to monitor remote areas that 



currently require time consuming long distance foot travel over difficult terrain. 

3. Methodology 

3.1 Data Profile 

Ercanoglu et al.’s (2006) methodology for fire susceptibility models at wildland-urban 

interfaces (WUI), was modified to produce fire susceptibility models for habitat where mule 

deer winter range and Greater Sage-grouse lekking grounds habitat data replaced the WUI 

component. Three data types representing land cover, topography, and habitat suitability were 

used (Table 1). One of the main objectives of the project was to investigate the effect of 

differing spatial resolutions on the accuracy of the output models, our analyses was done with 

two different sensors— 30 m Landsat-8 Operational Land Imager (OLI) and 10 m Sentinel-2 

(Table 2). Landsat-8 OLI scenes taken in June 2015 were downloaded to coincide with peak 

fuel loading in the study region and acquisition date of habitat data, however, the Sentinel-2 

scenes downloaded were taken in June 2016 due to the fact that the European Space Agency 

(ESA) keeps a 6-month rolling archive of data freely available. Topography information was 

extracted from digital elevation models (DEMs) obtained at 30 m and 10 m spatial resolutions 

to correspond with Landsat-8 OLI and Sentinel-2 data, respectively. Information on the habitats 

of the two focus species, mule deer and the Greater Sage-grouse, were obtained from Idaho 

Fish and Game (IDFG). The mule deer winter habitat suitability data from 2015 was obtained 

as a raster layer that showed gradation of habitat suitability, from high to low, as indicated by 

a model developed by the IDFG. The Greater Sage-grouse, also gathered from IDFG, data was 

obtained as point data showing active and occupied lekking grounds for 2015. A lekking 

ground is location where one or more male birds strut to attract female partners. A typical 

breeding ground uses this location as a nucleus with brooding and nesting grounds forming 

outwardly. In Idaho majority of brooding and nesting sites are found on average within a 6.2 



mi (10 km) radius of the lekking ground (Crawford et al. 2004). There was however, no clear 

indication of gradation in the suitability of these habitats so it was assumed that the entire buffer 

contained suitable habitat. 

Table 1. Required datasets and model inputs for fire susceptibility models 

Component Dataset Required Input 

Topography DEM Aspect: sun’s position 
Slope: rate of Spread 
Slope: suppression difficulty 

Land cover    Landsat-8 OLI 
   Sentinel-2 

Fuel load: vegetation 
moisture 
Fuel load: rate of spread 
Fuel load: fire intensity 

Habitat suitability Habitat  Mule deer habitat 
 Greater Sage-grouse habitat 

 

Table 2. Landsat-8 and Sentinel-2 data downloaded for analyses 

Sensor Spatial Res. Source Product 
Level Identifier Acquisition 

Date 

Landsat-8 
OLI 30 m USGS Earth 

Explorer 1B 
Path 39, row30 13-Jun-15 

Path 40, row 30 22-Jun-15 

Sentinel-2 10 m ESA Sentinel 
online 1C Relative orbit 

R127 5-Jun-16 

 

3.2 Data Processing 

Although both Landsat-8 OLI scenes were downloaded in June 2015, there was a 9-day 

difference in acquisition dates so scenes were analysed separately. Both scenes were converted 

to surface reflectance using the Cos(t) model correction to remove distortions caused by Mie 

and Rayleigh scattering (Chavez, 1996).  



The Sentinel-2 data was downloaded as a Level -1C product, with geometric 

corrections completed and top-of-atmosphere reflectance converted. We used the plugin in 

QGIS to convert all associated granules to surface reflectance. This data was not divided and 

analyzed separately as was done for the Landsat-8 OLI since all scenes were obtained on the 

same day.  

3.3 Data Analysis 

3.3.1 Aspect 

Aspect for the study area was generated from the DEMs to investigate the effect the sun’s 

position has on the degree of desiccation, and how that relates to fire susceptibility. Weightings 

from 0 to 1000 were applied depending on the amount of sunlight a surface has the potential 

to receive (Ercanoglu et al., 2006). Since south and southwest facing slopes are known to 

receive the most sunlight, they were assigned the highest weight of 1,000 while north facing 

slopes were assigned the lowest weight of 100. 

3.3.2 Slope: rate of spread 

The rate of fire spread is influenced by slope, where fire is easily spread as steepness increases 

(Rothermal, 1983). Slope, in degrees, was generated for the entire study site using DEMs. 

Weightings from 0 to 1,000 showing an incremental increase with increase in slope were 

applied following after Ercanoglu et al. (2006). 

3.3.3 Slope: suppression difficulty 

Fire suppression efforts become more difficult with the increase in slope since suppression 

equipment cannot easily traverse steep slopes. This presupposes that habitats on higher ground 

must be more susceptible to fire since it takes longer for firefighters to fully suppress such fires. 



Firefighters with the BLM have identified a threshold of 30º where suppression efforts become 

especially difficult (Michelle Mavor, personal communication, June 19, 2015). Weightings 

from 0 to 1,000 were applied to the study area slopes, being gradual from 0º to 30º and 

increasing sharply at the 30º slope threshold (Ercanoglu et al., 2006). 

3.3.4 Fuel load 

To determine fuel load, a sub model was developed using classification tree analysis (CTA) to 

classify the different fuel loads found within the study area. Three different inputs, vegetation 

moisture, rate of spread, and fire intensity, were derived from fuel load. A total of 1,572 

randomly sampled in-situ data points collected by the BLM and researchers at Idaho State 

University (ISU) in 2014 represent fuel loads throughout the study site. Fifty-three basalt points 

were sampled virtually by cross referencing NAIP 2015 imagery (1 m spatial resolution) and 

NDVI classifications computed from the Landsat-8 OLI scenes. These samples had been 

grouped into four fuel load classes by the field experts (Table 3). 

Table 3. Fuel load classes 

Class Description Fuel load (ton/acre) 

1 Barren rock and water 0 

2 Grass 1 

3 Shrub 4 

4 Forest 6 

 

The data points were randomly split into 60% training and 40% validation sets. Using the 

training dataset alone, a CTA model was developed with these input predictors: 

 1. Landsat-8 OLI bands 1-7    5. Elevation (DEM) 

2. NDVI      6. Slope 



3. MSAVI2      7. Aspect 

4. NDBSI      8.Tasselled cap indices 

Using the validation dataset, a standard error matrix was developed which compared each 

predicted class (modelled) against the actual measured class (field and virtual samples). The 

kappa statistic was used as the standard for evaluating the model’s performance. Weightings 

from 0 to 1000 were suggested by expert opinion and applied to the model predictions 

depending on the interested attribute: 

Vegetation moisture: This input accounts for how moisture in vegetation affects the 

different fuel load classes. High vegetation moisture decreases fire susceptibility of a 

location with high fuel load by making the vegetation less flammable. The fuel load sub-

model was used in combination with generated NDVI to determine locations of 

vegetation that have high fuel loads but a low probability of burning due to excesses of 

moisture in the vegetation. Pixels with high vegetation moisture values negatively 

influenced the overall fire susceptibility and were hence given the lowest weights, 

whereas those with dry vegetation and high fuel load had the highest weighting. 

Rate of spread: The rate of spread takes into account how easily a fire spreads depending 

on different fuel load classes. Faster burning fuel classes like grass have been known to 

be the main carriers of fire (Ercanoglu et al., 2006) and thus were assigned higher 

weightings in comparison to denser vegetation like slash. 

Fire intensity: The fire intensity variable takes into account how different fuel loads 

affect the fire intensity, the amount of energy produced during a fire. This parameter 



was found to be directly proportional to the total fuel load present within each pixel 

such that heavier fuel loading equalled higher intensity.  

3.3.5 Fire Susceptibility Model 

After completing the above analyses, percentage contributions of each of the seven inputs on 

the overall fire susceptibility were applied. The weightings that Ercanoglu et al., 2006 applied 

were adopted, changing the input for urban areas to reflect the mule deer and Greater Sage-

grouse habitat inputs. The output map was reclassified using natural breaks for the distribution 

of the data to represent fire susceptibility classes. All these analyses were done for the Landsat-

8 OLI data as well as the Sentinel-2 data to investigate the effect of changing spatial resolutions 

on the accuracy of the output model. 

4. Results & Discussions 

4.1. Vegetation Model 

The CTA generated vegetation model showed that contrary to popular belief, there is indeed 

vegetation within the lava flow formations found at CRMO. The Sentinel-2 vegetation model 

was seen to register more vegetated areas than Landsat-8 OLI. Visual verification with Google 

Earth showed that these locations identified by Sentinel-2 were indeed vegetated. There was 

however, some disparity between the classes of vegetation classified by Landsat-8 OLI and 

Sentinel-2 which is likely due to the difference in the spatial and radiometric resolutions of 

these two sensors and how they identify spectral signatures. 

4.2. Fire Severity Models 

The resulting fire susceptibility models were divided into low, moderate, and high classes using 

the natural breaks in the data distribution which showed great agreement between both sensors. 



Model outputs for Sentinel-2 had more areas classified as moderate and high susceptibility 

when compared to Landsat-8 OLI. This is likely a result of Sentinel-2 being able to identify 

more vegetated areas than Landsat-8 OLI within the lava formations.  

4.2.1. Mule Deer Habitats 

Mule deer fire susceptibility models developed with Landsat-8 OLI and Sentinel-2 sensors, are 

shown in figures 1a and 1b, respectively. The Sentinel-2 model identified twice as many highly 

susceptible acres in comparison to that of Landsat-8 OLI (Table 4). Together both models 

classified a total of approximately 25,400 acres (3.4%) of the CRMO as highly susceptible to 

wildfires (Table 6). Spatial analyses of these areas classified as highly susceptible show 5,600 

acres (0.74%) of agreement between both models (Figure 2, Table 5). Also, both models agreed 

that a well-known summer migration path of the mule deer is highly susceptible to wildfires. 

This may be something that land managers need to allocate resource toward in future planning 

(Figure 1). 



 

 

Figure 1. Mule deer fire susceptibility models generated with Landsat-8 OLI (a) and Sentinel-
2 (b), respectively. 

Table 4. Area of mule deer fire susceptibility classes for CRMO in acres.  

Fire Susceptibility 
Class 

Area (acres) 

Landsat-8 OLI Sentinel-2 

Low 478,099 419,059 

Moderate 264,059 312,785 

High 10,360 20,676 

Low 
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Known mule 
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migration path 
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Figure 2. High fire susceptibility for mule deer models with Landsat-8 OLI in blue, Sentinel-

2 in green, agreement of both sensors in red and areas without a high fire susceptibility 

classification in grey. 
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Table 5. Summary of areas classified as highly susceptible to wildfires in CRMO for mule 

deer model. 

Sensor 
Area 

Acres Percentage 

Landsat-8 OLI 4,750 0.63% 

Sentinel-2 15,069 2.0% 

Both 5,591 0.74% 

Neither 726,839 96.6% 

4.2.2. Greater Sage-grouse Habitats 

Figures 3a and 3b show the Greater Sage-grouse fire susceptibility models developed with 

Landsat-8 OLI and Sentinel-2 sensors, respectively. Both models showed comparable areas of 

high susceptibility with Sentinel-2 registered 16,568 more acres of high susceptibility than 

Landsat-8 OLI (Table 6).  Together both models registered approximately 292,700 acres 

(38.9%) of the areas as highly susceptible to wildfires (Table 7). This is likely an 

overestimation of high susceptibility areas due to the fact that the suitability of the different 

areas of the Greater Sage-grouse habitats were not clearly identified or graded into classes as 

was done for the mule deer data.  Sentinel-2 and Landsat-8 OLI models agreed that 164,700 

acres or 21.9% of the CRMO study area were highly susceptible to wildfires.  



 

Figure 3. Greater Sage-grouse fire susceptibility models generated with Landsat-8 (a) OLI and 

Sentinel-2 (b) 

Table 6.  Area of mule deer fire susceptibility classes for CRMO in acres. 

Fire Susceptibility 
Class 

Area (acres) 

Landsat-8 OLI Sentinel 2 
Low 285,973 262,846 

Moderate 246,011 252,570 

High 220,522 237,090 
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Figure 4. High fire susceptibility for Greater Sage-grouse models with Landsat-8 OLI in blue, 

Sentinel-2 in green, agreement of both sensors in red and areas without a high fire susceptibility 

classification in grey. 

Table 7. Summary of areas classified as highly susceptible to wildfires in CRMO for Greater 

Sage-grouse model. 

Sensors 
Acres Classified 

Acres Percentage 

Landsat-8 OLI 55,685 7.4% 

Sentinel-2 72,250 9.6% 

Both 164,719 21.8% 

Neither 459,584 61% 

4.3. Model Validation 

The accuracy of susceptibility models are difficult to evaluate because ignition sources are a 

major control of real-world wildfires, therefore extensive validations could not be covered in 

this paper. However, random visual verification of the models were completed using Google 

Earth to determine whether the locations classified as highly susceptible to wildfires correlated 

with the highly vegetated areas and vice versa. These verifications did indeed confirm the 

highly vegetated areas corresponded with high fire susceptible areas. Low fire susceptible areas 

in turn correlated with rocky terrains that had little to no discernible vegetation which gives 

credibility to the models performing satisfactorily. 

On July 04, 2016,  a few days after the generation of these models, the roughly 2,100 acre 

Timbered Dome fire occurred just 3 miles north of CRMO. Upon further analyses, we realized 

that this location had suitable habitats for both mule deer and the Greater Sage-grouse. These 

lost habitats will take years to regenerate, if at all. Analyzing the burned areas based on the 



models developed in this project, highly susceptible habitats for each species were identified 

prior to the burn.  The results indicated that 96% of the Greater Sage-grouse lekking and nesting 

and at least 76% of the mule deer winter habitats were highly susceptible to wildfire (Table 5a 

and 5b). Both models agreed that of the burned area 95.4% of  the Greater Sage-grouse habitats 

were classified as highly susceptible and 70.5% of the mule deer habitats (Figure 5a and 5b). 

This analysis serves as validation for the effectiveness of the models and reinforces the need 

for continued monitoring of habitats that are highly susceptible to wildfires.  

 

Figure 5. Susceptibility prediction of the Timbered Dome fire with developed models. 
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Table 8a. Summary of areas classified as highly susceptible to wildfires within the Timbered 

Dome fire boundary for Greater Sage-grouse model. 

Sensors 
Acres Classified 

Acres Percentage 

Landsat-8 OLI 87 4% 

Sentinel-2 7 0.35% 

Both 1,987 95.4% 

Neither 1 0.07% 

Table 8b. Summary of areas classified as highly susceptible to wildfires within the Timbered 

Dome fire boundary for mule deer. 

 

Sensors 
Acres Classified 

Acres Percentage 

Landsat-8 OLI 232 11.1% 

Sentinel-2 106 5.1% 

Both 1,469 5.1% 

Neither 276 13.3% 

 

 

5. Conclusions and Future Work 

For this study, we built fire susceptibility models for both mule deer winter habitats and Greater 

Sage-grouse lekking and nesting grounds found in CRMO. These models were generated at 

both a 30 m and 10 m spatial resolutions to investigate their effect on the accuracy of the output. 

Generally, the 10 m model was seen to pick up vegetation within the basalt formation better 

than that of the 30 m, a likely benefit of the increase in spatial resolutions. However, the 30 m 

model performed satisfactorily and is therefore a recommended choice for compromise 



between analyses speed and accuracy. Random visual validation using Google Earth correlated 

high fire susceptible areas to highly vegetated areas and low susceptibility to rocky areas with 

little to no discernible vegetation which gives credibility to the models performing 

satisfactorily. 

Independent validation with a recently occurred Timbered Dome fire showed all four models 

to predict at least 70% of this burn as highly susceptible to fire and would have helped in 

mitigating the loss of this habitat had the model been developed earlier. We believe these 

models are great tools that will better inform park and land managers in their quest to prevent 

the loss of these species.  
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