
 

 

 
NASA DEVELOP National Program 

 
GIS Training and Research Center, Pocatello, Idaho 

Summer 2015 
 

Idaho Disasters III 
Using Landsat Earth Observations to identify increased fire 

susceptibility due to invasion of cheatgrass (Bromus tectorum L.) 
 
 
 
 

 
 

                 Technical Report  
Final Draft - August 6, 2015 

 
Jeff May (Project Lead) 

Jenna Williams 
Zachary Simpson 

 
Keith Weber, ISU (Science Advisor) 

John Schnase, GSFC (Science Advisor) 
Mark Carroll, GSFC (Science Advisor 

 
 

Previous Contributors: 
Kiersten Newtoff 

Andrea Bodenburg 
Kyle E. Sowder 

Katherine Bradford 
Eric Smith 

  



1 
 

I. Abstract 
Wildfires, coupled with the presence of invasive plant species, are primary drivers of 
change in semi-arid savanna ecosystems. These wildfires disrupt ecosystems, human 
localities, critical habitats of threatened Greater Sage Grouse, Centrocercus 
urophasianus (Bonaparte, 1827), and create opportunities for invasive species to 
expand their populations. Wildland fire regimes have changed dramatically due to 
cheatgrass (Bromus tectorum L.), an invasive annual grass, which has effectively 
lengthened the wildfire season and increased fire frequency. Cheatgrass’ ability to 
quickly establish in disturbed areas creates a positive feedback cycle with wildland fire, 
resulting in landscapes that burn more frequently and become increasingly dominated 
by this invasive plant. This creates a need for more advanced landscape and wildfire 
monitoring tools that can identify the prominence of invasive plants in order to provide 
better information regarding fire susceptibility. Currently, there are no active cheatgrass 
management plans in Idaho due to the overwhelming capabilities of the plant to 
dominate landscapes. However, effective management of this species requires 
knowledge of its distribution in order to evaluate wildfire regimes and prevent 
cheatgrass expansion in recently disturbed landscapes. This study used spring and 
summer 2013, 2014, and 2015 imagery from Landsat 8 Operational Land Imager (OLI) 
and decision-tree-based classification to create a vegetation distribution map of SE 
Idaho that identified cheatgrass (74% accuracy) and was subsequently used to create 
a fire susceptibility map (r2: 0.67) for the study area. These results enhance the decision 
making processes of the Bureau of Land Management and Idaho Department of Land 
with respect to resource allocations and supports post-fire rehabilitation planning and 
fuel reduction programs. 
 
Keywords 
Remote sensing, wildland fire, cheatgrass, fire susceptibility, semi-arid savanna, 
ecosystem change 

II. Introduction 
 

Overview 
Wildfire is a primary driver of change in the semi-arid savanna ecosystems. Though fire 
often plays an essential role in wildland ecology and helps maintain natural processes, 
too many occurrences of wildfire can induce a loss of biodiversity, disrupt ecosystems, 
and deplete resources (Oppenheimer, 2013; Whisenant S.G., 1990). Estimates of annual 
wildland fire costs have tripled from less than $1 billion in the 1990’s to more than $3 
billion on average since 2002 (Gorte, 2013). However, the costs of wildfire management 
may be much more as these assessments reflect the direct suppression and protection 
costs of the federal government but did not consider local and state expenditures. It is 
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estimated that the Bureau of Land Management spends about $40/ha in fire protection 
efforts and around $77/ha in land rehabilitation after a fire occurs. (Pellant & Abbey et 
al., 2004). A twenty-seven yearlong study conducted by Dennison & Brewer et al., 
found that the total fire area across the western United States, has increased on 
average at a rate of 355 km² (221 mi²) per year, effectively increasing fire suppression 
and protection expenditures (Dennison & Brewer et al., 2014). It is broadly accepted 
that a primary driver of expanding wildfire regimes is the prominences of Bromus 
tectorum L., henceforth referred to by its common name, cheatgrass. 
 
Cheatgrass has become prominent in Idaho Rangelands and has overwhelmed native 
the native vegetation. It is a self-pollinating winter annual and can germinate in the fall 
or early spring.  This species is responsible for the transformation of sagebrush 
dominated landscapes into cheatgrass dominated monocultures (Mealor & Mealor et 
al., 2013; Brooke & Antonio et al., 2010; Peters & Bunting, 1994). Cheatgrass 
outcompetes native plants by consuming resources before the growth cycle of native 
species can begin. Its seeds can remain viable for up to five years, making this plant 
resilient to extended periods of drought (Pellant, 1996). Researchers suggest that 
cheatgrass dominates 2.5 million ha (6.2 million acres) of former sagebrush-grass 
rangelands in southern Idaho and roughly 10.1 million ha (25 million acres) in the Great 
Basin (Pellant et al., 2004; Laycock, 1991). This mass invasion is thought to have been 
aggravated by overgrazing, land misuse and abandonment, and an expansion of fire 
regimes (Laycock, 1991). 
 
A study by Balch, J. K et al., conducted in 2013 found that cheatgrass-dominated 
landscapes were four times more likely to ignite than native vegetation types. This 
twenty-year study documented that these cheatgrass controlled landscapes were 
more vulnerable to the largest fires recorded (Balch & Bradley et al., 2013). Cheatgrass 
is flammable 4 to 6 weeks sooner than native plants and is susceptible to wildfire 1 to 2 
months longer than native perennials (Platt & Jackman, 1946); this has effectively 
extended the fire season and has caused landscapes to burn more frequently (Mealor 
et al., 2013; Pellant, 1996; Stewart & Hull, 1949). An excess of desiccated cheatgrass has 
increased the frequency of wildland fires with intervals now less than 5 years on 
average in certain southern Idaho rangelands (Chen & Weber et al., 2001; Pellant, 
1996). 
 
There have been numerous studies that have attempted to delineate cheatgrass from 
the landscape using remotely sensed technologies. Landsat TM/ETM+, Advanced Very 
High Resolution Radiometer, and Moderate Resolution Imaging Sprectro-radiometer 
(MODIS) have been used to detect the amplified response of cheatgrass to 
precipitation using the Normalized Differenced Vegetation Index (NDVI) (Clinton & 
Potter et al., 2010; Bradley & Mustard, 2005).  Other studies have leveraged the unique 
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phenology (green-up and senescence) of cheatgrass to map its distribution from 
differenced images combined and various classification methods(Dudley & Dennison 
et al., 2015; Bradley & Mustard, 2008; Baraldi & Puzzolo et al., 2006; Peterson, 2003).  This 
study combined the Modified Soil Adjusted Index (mSAVI2) (Qi & Chehbouni et al., 
1994), Normalized Differenced Bare Soil Index (NDBSI) (Baraldi et al., 2006), Tasseled 
Cap Transformation (TCT) (Kauth & Thomas, 1976) derived from NASA’s Landsat 8 earth 
observations, and topographic data in Classification Tree Analysis (Zambon & 
Lawrence et al., 2006) to produce a fuel distribution model and subsequent fire 
susceptibility model. MSAVI2 was chosen as a proxy for greenness in the fuel 
classification model over the Normalized Differenced Vegetation Index (NDVI) due to 
NDVI’s sensitivity to bare ground reflectance, which results in overestimations of 
reflectance at a given pixel where there is a large proportion of bare ground 
(Rondeaux & Steven et al., 1996; Qi et al., 1994). Unlike Burgan’s fire potential model, 
the susceptibility model developed in study explicitly analyzes landscape and 
vegetation condition irrespective of climate variables (Burgan et al., 1998).  However, 
climate variables were leveraged to identify time periods with phenologically 
synchronous characteristics regarding cheatgrass growth. 

Objectives 
The objectives of this study were to create a fuel model using imagery acquired from 
the Landsat 8 Operational Land Imager (OLI), classified using decision-tree-based 
methods to identify areas with higher presence of cheatgrass.  The classified fuel model 
will be subsequently used for the creation of a fire susceptibility model (FSM) that 
quantifies fire susceptibility, defined as 
landscape combustibility respective to 
fuel type and topography. These two 
model will support the decision making of 
land managers responsible for 
coordinating wildfire risk prevention and 
other wildfire related activities 
 

Study Area 
The study focuses on southeastern Idaho 
(Landsat WRS-2 path 39 row 30) 
encompassing semi-arid savanna 
rangelands and montane forest regions 
(fig. 1).  The area is characterized by the 
Snake River Plains, which stretches east to 
west 640 km (400 miles) from Wyoming to 
Oregon and was formed as a result of the North American tectonic plate moving over 
the Yellowstone hotspot. Geologists believe that this hotspot was formed approximately 

Figure 1 - Study area and extent within Idaho.  Image 
from Landsat 8 OLI 
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16 million years ago and has traced a path through the landscape to its present 
location, Yellowstone National Park (Smith & Braile, 1994). This volcanic activity has 
modified the landscape, creating a 110 km (70 mile) channel that has crosscut the 
basin and range patterns of the Rocky Mountains and has significantly altered the 
climate of this area. From Yellowstone, the Snake River flows west through the 
desiccated countryside and sustains a tremendous diversity of plant and animal 
species. Throughout the study region, there exists critical habitat designations for 
Greater Sage-Grouse, a species that is currently threatened.  The state of Idaho has a 
strong interest in habitat restoration as fire suppression expenditures are given priority in 
order to protect these delicate habitats. 
 

Project partners 
This project falls under the National Aerospace Science Administration (NASA) Natural 
Disaster Applications Area seeking to improve wildfire susceptibility forecasting and 
enhance land management practices and decision making by providing fire related 
information products.  The Bureau of Land Management (BLM) and Idaho Department 
of Lands (IDL) are the primary end-users for this project.  Currently, these agencies rely 
on in-situ vegetation moisture measurements to support decisions regarding resource 
allocation across fire management zones throughout Idaho. Due to the large extent of 
the area of concern, field observations are not capable of providing a comprehensive 
assessment of vegetation distribution throughout the agency’s respective management 
zone.  Furthermore, the positive feedback cycle between cheatgrass and wildland fire 
is well understood (Brooks et al., 2010) within these organizations, but there is no process 
currently implemented that communicates cheatgrass distribution information to 
decision makers.  

III. Methodology 
 

Data Acquisition 
Satellite Imagery 
Level 1T Landsat 8 OLI imagery was acquired from the United States Geological 
Survey’s (USGS) Earth Explorer for WRS-2 path 39 row 30. The study period for this project 
encapsulated April through September 2013, 2014 and April through June, 
2015.  Twenty-three images in total were obtained from Landsat 8 OLI.  Corrections for 
atmospheric effects were applied to the imagery using the Cos(t) atmospheric 
correction model. Calculations to derive surface reflectance from multispectral bands 
were computed using the IDRISI TerrSet Landsat Import Archive module.  
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The phenology of a region changes between years and the phenological 
synchronizations of satellite imagery allows for stronger analysis of remotely sensed 
imagery regarding land cover change (Weber, 2000). Season and environmental 
conditions, especially perception and temperature, play a strong role in cheatgrass 
germination (Richards, 2013; Roundy et al., 2007; Miller & Franklin, 2002)   Phenologically 
synchronous images were identified using historic meteorological data was obtained 
from the Bureau of Reclamation’s AgriMet weather system. Agrimet is a cooperative 
agricultural weather network that collects and archives weather data from stations 
around the Pacific Northwest. Minimum, maximum, and average daily air temperatures 
were evaluated with daily precipitation in order to determine when cheatgrass was 
photosynthetically active, while native plant species were dormant.  Specifically, days 
where precipitation was observed were scrutinized to identify cheatgrass location. 
Temperature and precipitation were then analyzed to determine the days when 
cheatgrass green up would be more active. This data was used to identify, from the 
acquired Landsat 8 OLI images, which images were taken during active cheat grass 
growth. 
 
Pheno-Calc, a software package 
developed at the GIS Training and 
Research Center 
(http://giscenter.isu.edu), was used to 
match days of the year that are 
phenologically similar. The time period 
identified as meeting this criteria for 
active cheatgrass growth was a base 
temperature of 35 degrees Fahrenheit 
and a growing degree day (GDD) of 400 
with a 10% tolerance. A study conducted 
by Boyte et al., indicate that 400 GDD are 
necessary to begin the cheatgrass 
growth cycle (Boyte et al., 2015). Pheno-
Calc was used to analyze AgriMet 
historical meteorological records to 
determine GDD for each study year. 
Based on phenological similarities for 
early cheatgrass growth, three images 
were selected for this study that were 
suitable for maximum green-up of 
cheatgrass; May 15, 2013, April 16, 2014, 
and April 19, 2015 (Appendix A). 
 

Figure 2 – Classification sites digitized over 2013 NAIP imagery 

http://giscenter.isu.edu/
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Classification Sites 
Four classes of land cover were analyzed: bare ground, cheatgrass, montane forest, 
and sagebrush/herbaceous. The classification dataset was created from digitized 
points from the 2013 National Agricultural Imagery Program (NAIP), Landsat 8 derived 
mSAVI2, and a classified cheatgrass map from Clinton et al., 2010.  Also included in the 
classification dataset were in-situ point data from the University of Georgia’s Center for 
Invasive Species and Ecosystem Health, 2013 BLM summer field season, and Idaho State 
University GIS Training and Research Center’s 2014 and 2015 summer field season(fig. 2 – 
Appendix B). The dataset consisted of 397 classification sites in total: 61 bare ground, 
124 cheatgrass, 61 montane forest, and 149 sagebrush/ herbaceous. 
 

Data Processing 
Cloud masks were applied to the selected Landsat 8 OLI images prior to the deriving 
mSAVI2, TCT brightness, greenness, and wetness (Huang et al., 2002) and NDBSI indices.  
Ten-meter slope and aspect from the National Elevation Dataset (NED) was resampled 
to 30-meter resolution and included in the analysis based on expert knowledge that 
described the tendency of cheatgrass to grow on southern aspects and on slopes 
<30°  (Mavor, personal communication, June 19, 2015). These data underwent 
standardization prior to being input into CTA.  The data standardization process 
included ensuring all data was projected to WGS 84 UTM zone 12N and the number of 
rows and columns are consistent between all data.  Standardization of rows and 
columns was accomplished by applying a window of 30,825 km2 (11,901 mi2) not 
extening past the boundary of any image used in CTA. 

Data Analysis 
Fuel Classification Model 
CTA is a supervised, decision-tree based classification method described as being data 
driven and nonparametric (Miller & Franklin, 2002). Individual pixels are classified based 
upon spectral signatures exposed by the various vegetation indices through a random 
subset of the classification dataset. (Appendix C).  Gini split method and 2% auto-
pruning were specified in the classification.  A training data subset equal to 60% of the 
classification points for each class were used to train the CTA classification model.  CTA 
results were independently validated using the remaining 40% of the classification 
dataset (fig. 3).   
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Fire Susceptibility Model (FSM) 
The fuel model was combined with slope and aspect in a linear regression, FSM, which 
quantified fire susceptibility on a per-pixel basis.  Pixel values from FSM can be analyzed 
further using zonal methods to describe fire susceptibility within user-defined boundaries 
(Appendix G). The validity of FSM was assessed using historic fire occurrence data. 
 
Each individual parameter in FSM is weighted based upon its influence on fire 
susceptibility.  The model was weighted to give the greatest influence to fuel type 
under the assumption that fuel is the only parameter, of the three FSM parameters, that 
must exist for a fire to occur. Weights applied for fuel type, slope, and aspect were 0.5, 
0.25 and 0.25, respectively.  Classes within each FSM parameter were given a value 
where lower numbers represent decreased fire susceptibility and higher numbers 
represent increased fire susceptibility. Fuel type was weighted in ascending order from 
difficult to ignite (1 - bare ground), to most easily ignitable (4 - cheatgrass) based on 
fuel classification (1 hr, 100- hr, 1000-hr, etc.). Sagebrush/herbaceous was given a value 
of 3 and montane forest was given a value of 2.  Slope values were classified on a 
range from 1 to 7 in 10° increments, where a value of 1 was assigned to 0° to10° slopes 
and a value of 7 was assigned to 61° to 70° slopes.  Steeper slopes were assigned higher 
values, based on the knowledge that fire spread rate increases as slope angle 
increases.  Steep slopes also limit what types of fire suppression activities that can be 
safely conducted (Mattsson & Thoren et al., 2002), making fire suppression more 
difficult.  
 

Figure 3 - Frequency distribution histogram of classification points used for training and validation of the classification model 
and results 
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Southern facing aspects have a higher chance of ignition (Mattsson et al., 2002).  This is 
due to prolonged sunlight exposure length and higher evapotranspiration rates 
creating favorable conditions for cheatgrass growth.  Values were assigned based on 
expert knowledge and cheatgrass’ observed preference for southern aspects (Mavor, 
s., personal communication, June 19, 2015). These values ranged from 1 to 6 where the 
highest values were assigned to directly south facing slopes and decreased 
incrementally towards northerly facing slopes. Flat areas were assigned a value of 3 
due to their average sun exposure. The sum of the parameter values multiplied by their 
respective weights produced a fire susceptibility value on a per-pixel basis from a range 
0 to 5.5 ranking fire susceptibility on a 1 to 5.5 scale, reserving 0 values for areas where a 
mask is applied.  To focus the results on areas where fire occurs, a mask was applied to 
the FSM results to remove cultivated fields, bodies of water and urbanized areas. 

IV. Results & Discussion 

Results 
Accuracy assessment of the fuel 
model (fig. 4) produced an overall 
accuracy of 74% with a kappa 
coefficient of 0.67 (Appendix D).  
The pixel-based fire susceptibility 
model (fig. 5) had an r-squared 
value of 0.61 when compared to 
historic fires occurrence data 
(Appendix F).  The validation of 
the fire susceptibility model was 
done under the assumption that 
areas that have higher fire return 
rates are more susceptible to 
fire.  Examining the fuel model 
results, we see that the fuel models 
are driven by the classification of 
the fuel type. Due to the nature of 
cheatgrass to promote wildfire 
frequency, it is imperative that areas with high concentrations of cheatgrass be 
scrutinized thoroughly.    
 

Figure 4 - Fuel model derived from Classification Tree Analysis 
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Interpretation of the fire 
susceptibility results show that 
areas that experience frequent 
fires as well as southern facing 
slopes are most susceptible to 
wildfire, there is a strong 
relationship (r2=0.61)between 
historical wildfire occurrence and 
fire susceptibility. This means that 
land management agencies can 
prepare resources for fire 
suppression and land restoration 
in these areas that display a 
trend toward the cheatgrass-
wildfire cycling. 

Discussion 
 
The limited number of 
classification points did not allow for the spectral purification of the classes used in the 
fuel model.  Classes were often spectrally ambiguous in some of the processed data 
used in CTA, though each class was discriminated from at least one of the CTA 
inputs.  Increasing the number of classification sites used for training decision-tree 
models allows for the purification of training sites, effectively reducing spectral 
ambiguity within a specific class and may result in improved classification 
accuracy.  For this study, approximately 45% of the classification sites for each class 
were derived from field observations; increasing the proportion of in-situ observations for 
training and validation can also result in improved model accuracy. It is worth noting 
that not all bands were used in CTA.  Interestingly, slope and aspect were not utilized in 
the classification, but despite this, the tendency of cheatgrass classification to southern 
aspects is still observed. 
  
Future work related to this study would want to address the lack of class 
homogeneity within 30-meter Landsat pixels as well as quantifying the abundance of 
“bare ground” in each pixel.  We attempted to address this condition by using, mSAVI2 
which is less sensitive to bare ground reflectance but there are methods that involve 
“unmixing” the spectral signature of the pixel using hyperspectral imagery.  Data from 
the HyPERI mission may provide methods for quantifying the amount spectra emitted 
from each class within a given pixel.  The coverage of hyperspectral images is often 
limited, so it is regarded as best for future work to focus its study area throughout 
wildland urban interface (WUI), as this area poses the greatest fire risk (Hardy, 2005) to 
human society.  Soil moisture plays is a significant factor on fire severity, or how hot the 

Figure 5 - Results from FSM on a pixel-by-pixel basis 
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fire burns and may also exhibit different characteristics in a cheatgrass dominated site 
compared to native vegetation.  NASA’s Soil Moisture Active Passive (SMAP) root zone 
soil moisture data products could be leveraged to further identify areas dominated by 
cheatgrass or for estimating fire severity. Furthermore, fuel models, including the model 
created in this study, could be combined with gridded weather from the national 
oceanic and Atmospheric Administration (NOAA) to create advanced fire susceptibility 
forecasting models (Preisler et al., 2009)  

V. Conclusions 
Detecting areas that are susceptible to wildfire is possible utilizing remotely sensed data. 
Species specific classification can be successful when the target species is 
phenologically distinct from surrounding vegetation types.  Based on the accuracy 
assessment of our fuel classification model, it is concluded that this model is reliable 
(Goodchild & Biging et al., 1994). In the past efforts to detect concentrations of 
cheatgrass have been somewhat successful, but utilizing previous Landsat imagery did 
not provide the capacity of Landsat 8. Landsat 8 OLI imagery was able to distinguish 
concentrations of cheatgrass better than former attempts due to the enhanced 
radiometric resolution of Landsat 8 OLI compared to previous Landsat instruments. The 
methods discussed for the fuel distribution model are applicable to areas where 
cheatgrass is prevalent or where the vegetation of interest has unique phenotypic 
characteristics that are detectable with remotely sensed technology.  Heterogenous 
distribution of land cover classes in Idaho rangeland, and many other places, continue 
to be problematic for remotely sensed image classification, though this problem can be 
mitigated by the use of higher resolution imagery and/or hyperspectral analysis.   
 
The results of this research support land managers decision making process by providing 
fuel distribution and fire susceptibility information products at local and regional 
scales.  This allows managers to identify areas with increased fire susceptibility and take 
appropriate action to reduce fire risk amongst human localities. In addition to fire 
susceptibility detection, this model can be used for land restoration efforts, ecological 
forecasting and overall land health maintenance.   
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VIII. Content Innovation 
 

AudioSlides – 2015Sum_ID_IdahoDisastersIII_ContentInnovation_AudioSlides.pptx 
Featured Author Videos - 2015Sum_ID_IdahoDisastersIII_FeaturedAuthorvideo.mp4 

IV. Appendices 
 

Appendix A – Imagery selected from time series for analysis 

 Month Day Landsat Image Average 
Precipitation 

(mm) 

Average 
Temperature 

(C) 

Growing 
Degree 

Days 
(GDD) 

2013 5 15 LC80390302013135LGN01 16.51 18.62 652.39 
2014 4 16 LC80390302014106LGN00 57.66 6.18 390.11 
2015 4 19 LC80390302015109LGN00 

 
13.46 9.86 466.55 

 

Appendix B – Distribution table for Classification with numbers allocated for training and 
validation 

 Classified 
Points 

# used for Training 
(60%) 

# used for Validation 
(40%) 

Bare Ground 61 37 24 

Cheatgrass 124 74 50 

Sagebrush/ 
Herbaceous 

149 89 60 

Montane 
Forest 

63 38 25 

 
 
 
 
 
 
 
 
 
 



15 
 

Appendix C – Classification Tree image with band descriptions 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Band Image Name Date 
Used in 
CTA 

1 TCT Wetness 4/19/2015 Yes 
2 TCT Wetness 4/16/2014 Yes 
3 TCT Wetness 5/15/2013 Yes 
4 TCT Greenness 4/19/2015 Yes 
5 TCT Greenness 4/16/2014 Yes 
6 TCT Greenness 5/15/2013 No 
7 TCT Brightness 4/19/2015 Yes 
8 TCT Brightness 4/16/2014 No 
9 TCT Brightness 5/15/2013 No 

10 Slope 30m n/a No 
11 NDBSI 4/19/2015 Yes 
12 NDBSI 4/16/2014 Yes 
13 NDBSI 5/15/2013 No 
14 mSAVI2 4/19/2015 No 
15 mSAVI2 4/16/2014 Yes 
16 mSAVI2 5/15/2013 No 
17 Aspect 30 m n/a No 
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Appendix D – Classification Tree Analysis (CTA) Results Error Matrix for validation points 
showing user, producers, and overall accuracy  
 
 Sagebrush/ 

Herbaceous 
Cheatgrass Bare 

Ground 
Montane 

Forest 
Total Error C 

Bare 
Ground 

4 5 20 1 30 0.33 

Cheatgrass 8 33 2 1 44 0.25 

Sagebrush/ 
Herbaceous 

45 8 2 3 58 0.22 

Montane 
Forest 

3 4 0 20 27 0.26 

Total 60 50 24 25 159  

Error0 0.25 0.34 0.17 0.2  0.26 

Kappa: 0.67 
 

Appendix E – Fire susceptibility model workflow 
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Appendix F – Historic fires frequency dataset (1930 – 2014) 
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Appendix G – Zonal mean FSM results analyzed at level 6 Hydrologic Unit Boundaries 

 

 

Figure 2 - FSM mean value within HUC 6 watershed boundaries 
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