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I. Abstract 
Wildfires play an important role in ecosystem health, with many native plant 

species dependent on fire to complete their life cycle. Wildfires also burn dead 
vegetation, which recycles nutrients back into the soil. However, climate change has 
created favorable conditions in the western United States for larger and more frequent 
wildfires, which can disrupt ecosystems and human localities. Also, the invasion of 
cheatgrass (Bromus testorum) across the landscape has drastically increased the 
duration of the fire season by contributing to the fuel load. To prepare for the fire 
season in Idaho, the Bureau of Land Management (BLM) and the Idaho Department of 
Lands (IDL) use vegetation moisture measurements from the National Fuel Moisture 
Database to identify and allocate resources to regions with drier vegetation during the 
year. To supplement that database, this research analyzed the Normalized Difference 
Vegetation Index (NDVI) and surface temperature (ST) to investigate their ability to 
identify fire susceptible regions since both of these variables characterize the quality of 
vegetation, are gathered frequently, and are continuous. The data for each of these 
variables was obtained from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) instrument aboard the Terra satellite from 2001 – 2014 and examined in 
shrubland and grassland habitats as determined by the 2011 National Land Cover 
Dataset. These land classes were analyzed due to the high abundance of fires 
occurring in these habitats every year. The NDVI and ST in each land class was 
compared across the state to the number of fires that occurred each year. On a 
smaller scale, individual burned regions were compared to unburned areas to 
determine if NDVI or ST had a unique signature in the months leading up to a fire. In 
addition to this analysis, precipitation data was gathered from a number of sources to 
assess their quality, accuracy, and relationship with fires across the region. The results 
and data gathered from this study will support Idaho Department of Lands (IDL) and 
Bureau of Land Management (BLM) in resource allocation early in the fire season and 
planning fuel load reduction activities following the fire season. 
 
Keywords 
Wildfire, savannah, fire susceptibility, fire risk  

II. Introduction 
Wildfires are natural ecological processes that support long term environmental 

sustainability and diversity but are also considered major disturbance mechanisms to 
human society.  As humans expand further into wilderness areas, wildfires increasingly 
have a negative economic impact (Schneider et al., 2008). This vulnerability is apparent 
when considering the Charlotte Fire, which burned over 1,000 acres in June 2012 in the 
Mink Creek area south of Pocatello, ID. This fire destroyed 66 homes, forced the 
evacuation of 1,000 individuals, and caused roughly $7.2 million in damage (Hancock, 
2012). Our research is classified in Idaho Disasters due to the deleterious effects of 
wildfires on the landscape and society. 

The need for understanding fire susceptibility has been recognized since the turn 
of the 20th century when the northeastern United States experienced a series of 
extreme fire seasons (Donovan et al., 2008). Increasing human risk related to wildfire 
creates a need for advanced tools and applications that will aid emergency 
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responders in identifying areas susceptible to fire, mitigating active fires, and 
developing post burn area rehabilitation strategies. Fire susceptibility has been 
addressed with the fire potential index (FPI) that was developed by Burgan, et al. 
(1998), and took into account the weather conditions, a fuel model map, and 
vegetation greenness using remote sensing. Since the development of this model, other 
studies have used various remote sensing variables to develop superior models in 
mapping fire susceptibility (Schneider et al., 2008; Newnham et al., 2010; Huesca et al., 
2009). These models have been adopted by different wildfire management teams for 
real-time monitoring of fire susceptibility. 

However, these models identify fire susceptible regions on a daily basis, with 
some having the ability to forecast fire susceptibility up to a week in advance. If wildfire 
management organizations were able to identify regions of increased fire susceptibility 
months in advance then proactive actions such as prescribed burns, fire-fighting 
resource allocation, and personnel preparedness can be taken. Currently, our end-
users the Bureau of Land Management (BLM) and the Idaho Department of Lands (IDL) 
prepare for the fire season by measuring vegetation moisture and referring to the 
National Fuel Moisture Database to identify and allocate resources to regions with drier 
vegetation during the year. BLM has operational responsibility for wildland fire on 
approximately 250 million acres of public land in the U.S., including 12 million acres or 
22% of the land base in Idaho. IDL is the primary state-level agency responsible for 
managing wildfire in Idaho. Being able to easily identify fire susceptible areas would 
help both parties allocate their limited resources to carry out fire management plans. 
We investigated the ability to use remote sensing to supplement their current practices 
since satellite imagery is gathered frequently and has continuous values across the 
landscape. 

Our study area comprised of the expansive savannah ecosystems from the 
southern border of Idaho to 44.5°N and spans across the entire state from east to west. 
A majority of this region is classified as semi-desert scrub and grassland as identified by 
the 2011 National Land Cover Dataset (NLCD), most of which is located in The Big 
Desert (Figure 1). Although not analyzed in this study, land cover in this region included 
agricultural and residential areas along the Snake River and forested woodlands 
leading into the foothills of numerous mountain ranges. Yearly total precipitation in 
southern Idaho ranges from 20 to 30cm, of which 25 - 50% is snowfall. Vegetation in the 
savannah ecosystems is a mixture 
of native and non-native species. 
Native species include sagebrush 
(Artemisia tridentata) and rabbit 
brush (Chrysothamnus nauseosus) 
(Chen et al., 2011). An important 
invasive species, cheatgrass 
(Bromus tectorum), expands millions 
of hectares in southern Idaho. 
Cheatgrass is a highly flammable 
species and is primarily the reason 
for increased fire frequency in our 
study area (Laycock, 1991). Nearly 
100% of the wildfires in this region 
occur between May and October, 

Figure 1: Map of study area in southern Idaho. 
Grassland and shrubland land classifications derived 
from the 2011 NLCD.  
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peaking in July and August, which are the warmest months in southern Idaho 
(Westerling et al., 2003).  

Our study used remote sensing to identify fire susceptibility on a temporal and 
spatial basis. Temporally, we investigated the relationships between the number of fires 
each year compared to the normalized vegetation difference index (NDVI) and 
surface temperature (ST). We hypothesize that NDVI prior to the fire season is larger in 
years that have more fires because higher NDVI values are related to higher biomass, 
which provides more fuel for fires. Surface temperature was used as a proxy of 
vegetation moisture, higher temperatures is correlated with drier vegetation since there 
is little evapotranspiration (Sandholt et al., 2002). Spatially, we compared the NDVI 
between burned and unburned regions during the year. Similar to the temporal study, 
we hypothesize that regions that burned had a higher NDVI leading up to the fire since 
increased NDVI can indicate more fuel biomass. Precipitation was also investigated 
because its link with vegetation and soil moisture; there may be a decrease in wildfire 
activity in wetter years (Chen, 2014). Fires occurring since 2001 were identified for 
analysis, which coincides with the beginning of NDVI and ST observations from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra 
satellite. 

III. Methodology 
Fire Data 
 Polygon shapefiles of fires occurring until 2012 
in Idaho were obtained from the Interactive Numeric 
& Spatial Information Data Engine - Idaho 
(http://inside.uidaho.edu). Fire data since 2012 were 
obtained from the USGS Geosciences and 
Environmental Change Science Center GeoMAC 
Outgoing Datasets portal 
(http://rmgsc.cr.usgs.gov/outgoing/GeoMAC). Fires 
were classified as either a grassland or shrub fire 
depending on which land class a majority of its pixels 
belonged to; none of the fires had a majority of pixels 
outside of these land cover classes (Table 1). 
Although there are more fires occurring in the 
shrublands than grasslands, the grassland land cover 
has more fires per million acres of land (138.1ac) than 
shrublands (73.3ac). Our analyses only focus on the number of fires occurring each year 
since the number of acres burned is a direct result of wildfire management and their 
decisions on letting a fire burn out or creating fire barriers to prevent the advancement 
of wildfires. 

 Number of Fires 
Year Grass Shrub Total 
2001 58 82 140 
2002 10 46 56 
2003 16 59 75 
2004 13 16 29 
2005 50 76 126 
2006 56 90 146 
2007 36 103 139 
2008 19 51 70 
2009 15 32 47 
2010 33 77 110 
2011 39 55 94 
2012 56 133 189 
2013 48 102 150 
2014 10 39 49 
Total 459 961 1430 

Table 1: Fire statistics within the 
study region since 2001.  
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Yearly Analysis - ST 

Surface temperature was analyzed across the study area in the grassland and 
shrubland land cover classes from 2001 to 2014. We used the MOD11A2 product from 
Terra MODIS which is an 8-day averaged dataset at a 1km resolution and stage 2 
validation. Each 8-day composite was retrieved from the Land Processes Distributed 
Active Archive Center from January 9th, the first product of the year, to September  

30th, since most fires have occurred by then. Our study area was completely 
contained within one MODIS tile. Data was scaled to Kelvin (scale factor = 0.02) and 
then converted to degrees Celsius. 

Using zonal statistics, the median surface temperature value within grasslands, 
shrublands, and both land covers in the study area were calculated across each image 
date. The median, instead of the mean, was used to lower the influence of anomalous 
values, especially from neighboring land cover classes like agriculture. Results were 
plotted against the number of fires that occurred in the land cover classes and were 
visually assessed before pursuing further statistical analysis.    
 
Yearly Analysis - NDVI 

Name Description 

Start of Season 
Time (SOST) 

Day of year at beginning of measurable 
photosynthesis  

Start of Season 
NDVI (SOSN) 

NDVI at day of year associated with 
beginning of measureable photosynthesis 

End of Season 
Time (EOST) 

Day of year at ending of measurable 
photosynthesis  

End of Season 
NDVI (EOSN) 

NDVI at day of year associated with ending 
of measurable photosynthesis 

Time of Maximum 
(MAXT) Time of maximum photosynthesis  

Maximum NDVI 
(MAXN) Maximum level of photosynthetic activity  

Duration (DUR) Length of photosynthetic activity (the 
growing season) 

Green-up 
Amplitude (G-
AMP) 

Maximum increase in photosynthetic 
activity above the baseline (MAXN – SOSN) 
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We analyzed 
NDVI and number of fires 
from 2001 to 2014. The NDVI product used in this analysis was the MOD13Q1 product 
from Terra MODIS, which is a 16-day composite at a 250m resolution and stage 3 
validation. Data was scaled (scale factor = 0.0001) to achieve values in the -1 to 1 
range.  The average NDVI on each day of a 16-day composite product was examined 
across the combined grassland/herbaceous and shrub/scrubland land cover 
classifications obtained from the 2011 NLCD. The NDVI pattern from each year was 
plotted and the 
vegetation phenology 
was derived. We 
adopted this 
methodology because peaks in NDVI earlier in the year may lead to more biomass fuel, 
which the 16-day composites will be able to capture. The different phenology metrics 
were then statistically compared to the number of fires occurring each year. Phenology 
metrics that were evaluated are described in Table 2, and a visual description is also 
available (Appendix: Figure 1). The average NDVI each imagery day was calculated to 
compare current NDVI conditions to historical averages and the annual NDVI time 
series from Jan - Sept were graphed to analyze year-to-year variation. 
 
 
Regional Analysis 

 In addition to examining temporal correlations with the number of fires each 
year, we wanted to use NDVI to spatially analyze fire susceptibility. We began by 
analyzing the year 2006, which had numerous large fires during the year in the study 
region. Twelve fires greater than 5000 acres were selected in order to ensure numerous 
NDVI pixels within the fire perimeter. We averaged the NDVI within a 250m buffer 
around lightning strikes (data obtained from the Bureau of Land Management) that 
occurred on the same day or the day prior to fire start. The previous day was included 
in case a lightning strike the evening before started a fire that was not reported until the 
following morning. Only five fires in 2006 had lightning strikes occur before or on the 
same day inside the fire perimeter (Figure 2). The NDVI around the lightning strikes, 
instead of the NDVI in the entire fire 
perimeter, was used because other areas of 
the fire may have not ignited if struck by 
lightning, rather it burned due to the spread 
of fire. Sometimes there was more than one 
lightning strike that met the criteria within a 
fire. Multiple lightning strikes in a fire were 
included since there is no definitive 
procedure in defining the lightning strike that 
originally caused the fire.  

The NDVI around lightning strikes that 
did not lead to a fire were used as a control. 
Control lightning strikes were identified within 
1 - 5km of the five fires that had lightning 
strikes. Strikes within 1km outside of the fire 
perimeter were not used in case lightning 

Brown-out 
Amplitude (B-AMP) 

Maximum decrease in photosynthetic 
activity above the baseline (MAXN – EOSN) 

Table 2: Vegetation phenology metrics derived from the United States 
Geological Survey. 

Figure 2: Fires (red) with lightning strikes on 
the same day or the day before the fire 
start. Lightning strikes during the same time 
period identified in 1-5km buffer outside 
fires. 
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coordinates were slightly inaccurate and to ensure the NDVI buffer would not overlap 
the fire perimeter. Control lightning strikes were limited to 5km outside of the fire to limit 
the variation in precipitation and other weather conditions between fire and control 
sites. Control strikes also needed to occur on the same days that the strikes within the 
fire occurred in order to keep as many variables constant across both lightning data 
sets. Lightning strikes were removed from the analysis if buffers overlapped or if there 
was a high density of strikes in a region. 

Using zonal statistics, the average NDVI within each 250m buffer was averaged 
across the lightning strikes within the fire perimeters and outside the fires from February 
18 - September 30th. The NDVI product described earlier is the same used in this 
analysis. Additional statistical analyses were conducted if individual days exhibited a 
significant difference in NDVI between lightning in fires and lightning outside of fires.  
 
Precipitation 

The precipitation component of this project focused on the availability of various 
data sources and establishing baseline precipitation statistics within the study area. 
Among the available datasets included Agrimet weather station data, PRISM 
precipitation, and Modern-Era Retrospective Analysis for Research and Applications 
(MERRA) ground moisture products. Statistics were compiled for each of these sources 
over a thirteen year time period (2001-2013).  

Weather station locations along with various climate tables were downloaded 
from the US Bureau of Reclamation’s AgriMet website. Datasets are available at any 
time window from the 1980’s to present. Data analysis and manipulation included 
summing values for hydrologic water years (April to September) and ensuring relational 
database keys were created in order to join the data spatially with the weather station 
dataset. Graphing of annual precipitation trends reveal trends that can be compared 
with the data gathered from the other precipitation products.  

The PRISM dataset includes AgriMet network weather station along with many 
other United States weather station network data. These datasets were acquired from 
the Northwest Alliance for Computational Science and Engineering 
(http://www.prism.oregonstate.edu/). Zonal statistics for the entire study area were then 
calculated for each year representing precipitation in inches. MERRA GWETTOP data, a 
NASA soil moisture product, was also analyzed to discover how correlated ground 
moisture was with precipitation. Monthly max values were averaged and compiled by 
year in order to compare against the AgriMet data.  

IV. Results & Discussion 
Yearly Analysis - ST 

The surface temperature profile 
during the year was similar between the 
grassland and shrub land cover classes 
(Figure 3). Although they share a similar 
profile, the grassland surface 
temperature was significantly higher 
than shrubland temperature. Kaufmann 
et al. (2003) found a similar trend and 
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explained that regions of higher NDVI will have a decrease in surface temperature 
during the summer. In our study, the NDVI of the shrublands was higher than grasslands 
in the summer which would account for the decrease in temperature (Appendix Figure 
2). Kaufmann et al. (2003) also found that the NDVI in winter was inversely related to 
temperature; regions with higher NDVI had higher surface temperature due to its 
relationship with snow cover. Although there was not snow on the ground in late 
February through April in southern Idaho, cheatgrass establishes itself in late Fall and 
quickly emerges from the cold weather with a rapid growth cycle compared to native 
shrubs (Stewart & Hull, 1949). The presence of vegetation in the grasslands prior to the 
main growing season causes the increase in surface temperature as compared to the 
relatively bare soil in the shrublands (Tesař et al., 2008).  

Since the temperature profiles for grasslands and shrublands were similar except 
for the few degrees Celsius difference throughout the year, we only analyzed surface 
temperature to number of fires for the total study area comprised of both land cover 
classes. The median temperature across the region was plotted for each 8-day 
composite for each year (Figure 4A). The surface temperature in June deviates 
between years with more fires and years with less fires. Further correlation analysis at 
each particular day (May 23, June 1, June 10; Figure 4B) revealed very weak 
correlations between the number of fires and the surface temperature. The lack of 
correlation could be due to a weak relationship between fires and surface 
temperature, but may also be due to the low spatial resolution of the data and the 
dependency of surface temperature largely from weather and not vegetation.  
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NDVI derived phenology metrics overall had weak correlations with number of 
fires for a given year with the exception 
of SOST and DUR.  These two metrics 
had the strongest correlation 
coefficients when analyzed with 
number of fires (-0.54 and 0.40, 
respectively). This data supports the 
hypothesis that more fires are positively 
correlated with an early growing season 
that lasts longer than average. 
Although most metrics did not have a 
correlation with fire, phenology is still 
important in considering an area’s 
susceptibility to fire.  The stage of the 
growing season when a fire first starts 
and the NDVI of the burned area 
leading up to the fire allows us to 
standard of phenology and NDVI 
conditions that need to exist for natural 
wildfire events to occur.  Without 
defined thresholds such as these, it is difficult to identify areas with higher susceptibility 
to fire using NDVI phenology alone.  

NDVI conditions for a specific year rarely fall outside one standard deviation of 
the historic average (Figure 5). Using the 16-day mean NDVI for a specific day across 
time series we can identify anomalous conditions with respect to current NDVI 
conditions above or below historic averages.  In this study, the average NDVI for April 
7th was calculated from the 2001-2014 time series (Figure 6B) and anomalous conditions 
for 2014 (Figure 6C) were identified by subtracting this average from the current April 
7th, 2014 conditions (Figure 6A).  Identifying areas where NDVI is lower than average at 
a specific time indicates that the vegetation there is not thriving, due to lack of 
precipitation or other environmental reasons, and has a higher susceptibility to fire than 
what is normally observed.  On the contrary, if NDVI is unusually high, it may raise 
concern about higher fuel loads later in the fire season. 
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Regional Analysis 
There was a significant 

difference in NDVI between lightning 
strikes inside and outside of the fire 
perimeters prior to the 2006 fire season 
(Figure 7). On April 7th, the NDVI 
around lightning strikes inside of fires 
was significantly higher than NDVI at 
strikes outside of fires (P < 0.03). This 
increase in NDVI could indicate an 
increase in biomass (Wessels et al., 
2006; Shippert et al., 1995), which 
provides more fuel and ignition 
potential for fires later in the season 
(D’Antonio & Vitousek, 1992). Towards 
the end of April there is a shift, control 
strikes have higher NDVI than strikes 
inside fires. Although this trend is not 
significant, it does provide potential 
evidence of vegetation senescence, 
making it more susceptible to fire 
ignition (Hardy & Burgan, 1999).  

Since there was a significant difference on April 7th, we examined two more 
years (2010 and 2012) using the same procedure described in the methods. We 
analyzed the years separately, instead of pooling all years together, because inter-
annual yearly trends are important in fire preparation. If the NDVI is higher on April 7th in 
some years while others exhibit no difference, then it becomes difficult to use this 
method as an early warning indicator of fire susceptibility. In 2010, the NDVI in fire 
locations was higher than control sites but was only nearly significant (P = 0.54). Also 
evident in 2010 is the switch in NDVI in which fire sites had a lower NDVI than control 
sites in late spring, possibly due to vegetation drying. However, this switch occurred in 
late May (Appendix Figure 3A), which is later than the switch in 2006. In 2012, the NDVI 
was higher inside fires than outside, but the significance drops (P = 0.20). There was no 
switch in NDVI in 2012, except during the fire season which is expected since the 
burned regions will drop in NDVI after the fire (Appendix Figure 3B). The general trend 
on April 7th is still present, and when the three years are pooled the NDVI in the fires is 
significantly higher than outside of the fires (P < 0.01).  
 
Precipitation 

Graphing the 
precipitation data from AgriMet 
precipitation shows the 
expected peaks and valleys of 
wet and dry years (Figure 8). 
When compared to the number 
of fires each year (Table 1), there 
is a strong correlation for dry 
years as might be expected, but 
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there are also interesting correlations in wet seasons. Similarly, Holden et al. (2007) found 
that the total number of days without rain and maximum amount of consecutive days 
without rain explained approximately 63% of the variance in total acres burned in the 
southwestern United States. Further research is needed to understand these trends 
better.  

AgriMet stations are relatively sparse and discrete, which created a challenge 
when trying to understand specific precipitation conditions at specific fire locations far 
from a weather station. PRISM data is preferable to AgriMet data, which only provide 
data measurements at discrete intervals. The overall precipitation data from AgriMet 
and PRISM have a strong correlation (R = 0.69; Figure 8) but the larger number of 
weather data collection centers 
in the PRISM dataset allows for 
more accurate spatial 
interpolation in regions lacking 
precipitation data. Its relatively high resolution (4 km) and continuous nature made it 
the preferred precipitation dataset to work with (Figure 9). 

While MERRA GWETTOP soil moisture data and precipitation data are not 
measured in the same way, there is a reasonable amount of correlation (R = 0.47 with 
Agrimet precipitation data). The role MERRA products might play with regard to fire 
susceptibility still remains unclear, but its availability and strong relationship with 
precipitation variables make it warrant future research. 
  
Future Work 

This research project is the first in a series of three. Our future terms will focus on 
building materials that the Bureau of Land Management and the Idaho Department of 
Lands need while in the field. One valuable resource is a vegetation cover map. 
Although the NLCD classifies areas based on vegetation and cover type, the wildfire 
agencies need maps that delineate vegetation species. Different vegetation types 
have different tolerances and susceptibilities to fire and also have direct implications on 
wildfire management. Many vegetation species in southern Idaho are introduced or 
are classified as a noxious weed, so management on these lands will be vastly different 
than in regions dominated by native flora.  

Currently, the BLM and IDL use vegetation moisture measurements that are 
gathered throughout the state in order to make decisions on resource allocation. 
Although there are a few proxies of moisture content using remote sensing spectral 
bands, the soil moisture active passive (SMAP) satellite will provide direct readings of soil 
and vegetation moisture. We plan to validate SMAP measurements with ground-
truthing data gathered in southern Idaho to validate its accuracy and usefulness in fire 
management. The vegetation moisture information that is currently collected is sparse 
and gathered every two weeks, so the potential for SMAP to fill gaps in this data is high. 
Although the low resolution (3km) will prevent wildfire managers from identifying the 
susceptibility of small land allotments, it can be used to pinpoint a drier vegetation 
region that managers can further investigate. 

Figure 9: PRISM maximum precipitation accumulation 
during hydrologic water year 
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V. Conclusions 
The Bureau of Land Management and the Idaho Department of Lands can use 

the results of this study in conjunction with their decision-making processes to identify 
areas of higher susceptibility. If these organizations know ahead of time the likelihood of 
fire across the state of Idaho, they can make decisions on firefighting resource 
allocation (M. Kuyper, pers. comm.). However, we didn’t find a correlation with surface 
temperature or NDVI and the number of fires from year-to-year. The lack of a significant 
trend could be due to the spatial availability of the data. Image composites for both 
surface temperature and NDVI were used since they were already processed to 
integrate the best pixels, and the decreased number of files led to faster computing. 
Vegetation characteristics in grasslands and shrublands change quickly as a result of 
weather conditions, so measurements taken more often may warrant different results. 
The course resolution of both measurements may also interfere with trends. 
 The regional NDVI analysis indicated that April 7th may be a key time period in 
determining an increased biomass load in areas that burned later in the season. 
Although this trend was consistent for 3 years, it was not always significant, so its use as 
an early warning indicator of fire susceptibility will need to be used with caution. The 
switch in NDVI patterns prior to the fire season may also indicate increased drying in 
vegetation within fires, which makes the fuels more ignitable, but this trend was not 
evident in all study years. 
 Among the precipitation datasets explored this term, PRISM was found to have 
the highest resolution, is continuous, is easily accessible, and has a wide temporal scale. 
Further it is highly correlated to ground measurements taken from weather stations. 
While precipitation data are known to impact fire susceptibility and behavior, alone it is 
not strongly correlated with the number of fires in the study area. 
 Overall, remote sensing can be used for identifying fire susceptibility months in 
advance, but likely cannot be used to determine the number of fires that will occur that 
year. Other remote sensing products such as SMAP may hold the key for strong 
correlations with fire susceptibility. 
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VIII. Appendices 
 

 

Figure 1: Phenology metrics visualized across 2013 NDVI in study area. 
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Figure 2: Average NDVI in 2006 between the grasslands and herbaceous land cover classes. 
 

 
Figure 3: Average NDVI in 2010 (A) and 2012 (B) between the grasslands and herbaceous land 
cover classes. 
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