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ABSTRACT 
We evaluated three scales (spatial and spectral) of remotely sensed data to model 
wetland habitat distributions in two ecologically distinct wilderness landscapes.  Two 
multispectral datasets, Landsat ETM+ (30 m, 6 bands) and ADAR 5500 (2 m, 4 bands), 
and one hyperspectral dataset, Hymap (3.5-4 m, 126 bands), were processed using 
numerous classification algorithms to map wetland features.  The classifications were 
validated using traditional error matrices and also interpreted from the viewpoint of an 
ecologist conducting field surveys.  The HyMap hyperspectral data produced the greatest 
classification accuracies of fine-scale wetland features; it was unmatched by the 
multispectral data.  The hyperspectral data provide additional information used to 
distinguish habitat features and should be considered a valuable tool for future inventory 
and monitoring initiatives that require fine-scale comprehensive information across large 
spatial extents.      
 
 
Keywords: hyperspectral, inventory and monitoring, scale, Frank Church-River of No 
Return Wilderness.  
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INTRODUCTION 
Based on observations over the past two decades it has been recognized that amphibian 
populations are exhibiting global population declines, which has stimulated concern 
among herpetologists and conservation biologists around the world.  In response to 
ongoing population declines, substantial effort has been invested in establishing broad 
scale inventory and monitoring initiatives to better understand current amphibian 
population distributions and relative abundance across large landscapes.  
 
In most cases, inventory and monitoring programs have only recently begun and the 
collection of initial inventory data remains the primary objective.  Following the 
inventory phase, repeated surveys can form the basis for a monitoring program.  
Monitoring specific key amphibian habitat features (e.g., shallow shorelines and 
emergent vegetation) can serve as a surrogate for organismal response to habitat 
alteration over time.  Modeling habitat features may also provide insights concerning the 
effects of proposed management actions on population dynamics across broad spatial 
scales. 
 
The ideal scenario for an inventory and monitoring program would be a comprehensive 
survey of all habitat available within the study area (Fellers 1997), but this is rarely 
possible because current amphibian habitat distribution is commonly unknown.  Small 
wetland sites (i.e., several m2) are not commonly detected using traditional methods of 
environmental mapping, such as USGS topographic maps and Digital Orthophoto 
Quarter Quadrangle (DOQQ) aerial photographs.  Standard imagery or maps typically 
help identify potential habitat distribution and assist a researcher in designing the most 
appropriate sampling scheme or site selection process.  Since these data sources do not 
always provide accurate information, ground based surveys are hindered due to the total 
number of hours needed to thoroughly inventory a region such as a forest or wilderness 
area. 
 
Recent advances in remote sensing technologies and the numerous scale options (i.e., 
radiometric, spatial, and spectral) commercially available today significantly enhance 
researchers’ abilities to design studies and investigate biological or ecological questions 
that previously could not be considered.  In this study, we have taken a multi-scale 
approach to assess the applicability of current remote sensing technologies to model 
wetland habitat distribution in a wilderness area.  The results are interpreted from an 
inventory and monitoring application perspective to propose the most appropriate 
remotely sensed data type for future broad scale amphibian conservation programs.   
 
 
Study Area 
The study area is located in the Frank Church-River of No Return Wilderness, Idaho 
(Figure 1).  Two ecologically different landscapes within the study area were chosen as 
representative study sites.  The first site is located along Big Creek, a fourth-order stream 
and major tributary to the Middle Fork of the Salmon River with elevations ranging from 
approximately 1100 m to 1900 m.  Douglas Fir (Pseudotsuga menziesii) and Ponderosa 
Pine (Pinus ponderosa) are the dominant tree species within the drainage while Black 
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Cottonwood (Populus balsamifera), Water Birch (Betula occidentalis), and Green Alder 
(Alnus viridis) represent the tree species most commonly found in the riparian areas along 
Big Creek and local tributaries.  Rocky Mountain Maple (Acer glabrum), Syringa 
(Philadelphus lewisii), and Prairie Rose (Rosa woodsii) comprise the majority of 
understory shrubs in the riparian area, while Giant Wildrye (Elymus piperi) and Idaho 
Fescue (Festuca spp.) characterize the drier upland hillsides.  The second site is located 
in the Bighorn Crags, a sub-alpine region of the wilderness characterized by high 
elevation glaciated cirque basins with elevations ranging from approximately 2400 m to 
2900 m.  Sub Alpine Fir (Abies lasiocarpa), Engelmann Spruce (Picea engelmanni), and 
Whitebark Pine (Pinus albicaulis) characterize the forested uplands and valley floors.  
Beargrass (Xerophyllum tenax) and Grouse Whortleberry (Vaccinium scoparium) 
dominate the forest understory and sedge (Carex spp.) is commonly associated with 
mesic meadows and wetland habitat. 
 

 
Figure 1.  The location of the Frank Church-River of No Return Wilderness, Idaho shown 
in green, with the study area denoted by the orange star.  The approximate area of the 
study sites are delineated by the yellow border.   
 
METHODS 
 
Image Acquisitions and Processing 
We performed all image processing and image classifications using Research Systems 
Inc.’s ENVI® 3.5 (RSI, 2002) and all GIS analyses were conducted using Environmental 
Systems Research Institute, Inc.® ArcGIS 8.2. 
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Multispectral Data 
The first multispectral dataset was collected on July 10, 2002 by NASA’s Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) satellite.  Landsat ETM+ uses an oscillating 
scanning mirror with +/- 5.78º angular displacement off-nadir, resulting in an image 
swath of approximately 185 km and an instantaneous field of view (IFOV) (i.e., spatial 
resolution) of 30 m for all spectral bands.  The Landsat ETM+ sensor collects six spectral 
bands of 8-bit data in the visible and infrared region of the electromagnetic (EM) 
spectrum (Table 1). 
 
The Landsat ETM+ data were received in the form of digital number (DN) values and we 
converted these data to at-sensor reflectance.  The reflectance conversion process is 
calculated as: 

 
Lλ = ((LMAX – LMIN)/255) · DN + LMIN 

 
Where, Lλ, is radiance (W/m2/sr/µm) for each spectral band, LMIN and LMAX are the 
gains and bias information respectively that are obtained from the image header file, and 
DN represents the assigned digital number of a spectral band. 
 
Reflectance, ρλ, for each band is calculated as: 
 
                                        ρλ  =          π · Lλ 
                                                  ESUN λ  · cosθ · dr 

 
 
Where Lλ is the radiance for each spectral band, ESUN λ is the mean exo-atmosphere 
irradiance for each band (Landsat 7 Science Users Handbook, Chapter 11, 2002) in units 
of W/m2/µm, cosine θ (θ = 90˚ - β) where β is the sun elevation angle.  The term dr is 
defined as 1/de-s

2
 where de-s is the relative distance between the earth and sun in 

astronomical units (Duffie and Beckman 1980).  The term dr is calculated as:  
 

 dr = 1 + 0.033 cos(DOY 2π/365) 
  
Where DOY is the sequential day of year. 
 
The second multispectral dataset was collected on July 31, 2002 by Positive System’s 
Airborne Data Acquisition and Registration (ADAR) 5500 system.  The ADAR 5500 
system incorporates Kodak Professional DCS 420 digital frame cameras with a 39º 
across-track field of view and a 0.44 mrad instantaneous field of view (IFOV) for each 
pixel in the CCD array.   The ADAR 5500 was configured to collect four spectral bands 
of 8-bit data in the visible and near-infrared regions of the EM spectrum (Table 1) with a 
spatial resolution of approximately 2 m. 
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Hyperspectral Data 
Hyperspectral data were acquired on June 30, 2002 by the airborne hyperspectral sensor 
HyMap (Cocks et al. 1998).  HyMap uses a whiskbroom sensor with a 61.3º field of view 
(512 across track pixels) with an IFOV of 2.5 mrad along track and 2.0 mrad across track.  
HyMap is typically flown on a twin engine fixed wing Cessna mounted with a gyro-
stabilized platform and incorporates a Boeing C-MIGITS II Global Positioning System 
(GPS)/Inertial Monitoring Unit (IMU) that corrects for aircraft roll, pitch, and yaw 
caused by turbulence.  HyMap collects 128 spectral bands of 12-bit data covering 0.44 
µm – 2.5 µm spectral region with a 15 nm average bandwidth (Table 1).  Spatial 
resolution of the hyperspectral data collected over the Big Creek and Bighorn Crags 
study sites were 4 m and 3.5 m respectively.     
 
The raw radiance data (µW/cm2 /sr/nm) collected by the HyMap sensor are influenced by 
incoming solar irradiance and atmospheric absorptions from gases such as water vapor, 
ozone, carbon monoxide, oxygen, carbon dioxide, nitrous oxide, and methane (Gao et al. 
1993).  In order to produce spectral signatures that can be compared with laboratory or 
ground-based spectra, and quantitatively evaluated, the radiance data must be converted 
into apparent reflectance.  The data vendor provided the hyperspectral imagery already 
atmospherically corrected using a radiative transfer model ATREM (Gao et al. 1997).  
The reflectance data were also spectrally “polished” using the Empirical Flat Field 
Optimal Reflectance Transformation (EFFORT), which removes residual and cumulative 
calibration and model imposed errors (Boardman 1998a).    
 
The Hymap data are collected on a pixel-by-pixel basis and therefore geometric 
corrections must be made to the data to insure that each pixel can be referenced to a real-
world coordinate system and used with other spatial datasets.  All of the pixel coordinates 
recorded during the flight are organized into an Input Geometry File (IGM) that preserves 
the spatial integrity of the ground pixel relationships (Boardman 1999).  Then a 
Geometry Lookup Table (GLT) is created which provides the truly measured coordinate 
positions supplied from the onboard C-MIGITS II GPS/IMU that corrects for platform 
motion and topography (Boardman 1999).  We applied the geometric correction files to 
the reflectance data which eliminated overlapping redundant pixels and resampled “gaps” 
in the data producing a geometrically corrected contiguous image.   
 
We used the Minimum Noise Fraction (MNF) transform to segregate the noise dominated 
spectral bands from the “information rich” spectral bands, and to spectrally reduce the 
computationally expensive dataset.  The MNF transform can be considered a two-step 
principal components analysis that accounts for correlated noise in the data caused by 
contiguous sequential spectral bands.  The first step calculates a noise covariance matrix 
and decorrelates and rescales the noise in the data (Green et al. 1988).  The second step is 
a standard Principal Component (PC) transformation where the transformed spectral 
bands are organized by decreasing variance (Green et al. 1988).  We examined the MNF 
transformed images using ENVI’s animation feature and considered the resulting 
eigenvalue plots to determine the dimensionality of each dataset.  The assigned image 
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dimensionality (i.e., the significant MNF bands) served as the input for subsequent 
hyperspectral processing steps.  
 
We used the Pixel Purity Index (PPI) and n-Dimensional Visualizer (nDV) to spatially 
reduce the dataset and identify the most spectrally “pure” pixels, or endmembers, in the 
imagery.  The PPI repeatedly projects n-dimensional scatter plots onto a random unit 
vector cumulatively scoring the pixels with the highest and lowest values as well as any 
other pixels falling within a defined standard deviation.  Pixels with extreme values are 
scored most often and theoretically represent the corners, or potential endmembers, of the 
multi-dimensional cloud of image pixels (Boardman 1993).  The nDV rotates potential 
endmember pixels (i.e., the results from the PPI) in a user-defined number of spectral 
dimensions.  We altered the number of spectral dimensions to expose endmember 
“corners” that are less evident in some collapsed dimensional axes.  We selectively chose 
the most spatially distinct corners in the multidimensional cloud of data and exported 
each endmember pixel(s).  This tool is interactively linked to the image and through 
repetitive investigations of the spatial distributions of endmember pixels, we were able to 
select image endmembers located within boundaries of features of interest (e.g., 
wetlands). 
 
 
Image Classification 
 
Multispectral Data 
The intent of the classification process is to map the distribution of wetland habitat as an 
indicator of potential amphibian habitat.  We are not abiding to a strict definition of a 
wetland and from this point forward we will refer to a wetland site generically as any 
location of standing water in the form of permanent lakes or ephemeral ponds and pools, 
but also wet meadows where water presence may be no more than a thin film or moist 
soil holding small puddles.  These site descriptions characterize typical amphibian habitat 
in the study area and hence are the focus of our classification efforts.   
 
The topography throughout the study area is characterized by steep slopes and ridges that 
produce an abundance of shadow influenced locations within both study sites.  Shadows 
and water exhibit a similar spectral response pattern of very low reflectance, and 
consequently these two classes were continually misclassified and confused in the 
multispectral imagery.  We decided the most accurate classifications of water features 
(i.e., wetlands) would be to distinguish them from the shadowed pixels in each image, 
and we paid close attention to selecting representative water and shadow training ROI’s 
(Regions of Interest).  We selected pixels in multiple training sites across the extent of 
each dataset to develop statistically representative ROI’s needed for appropriate image 
classifications (Jensen 2000).  We were not concerned with the ability to correctly 
classify surrounding vegetation features and collapsed all other image features into a 
single class labeled “everything else”.  This approach delineates a total of three spectral 
training ROI classes (i.e., water, shadow, and everything else) used to classify the 
Landsat ETM+ imagery.  We attempted to classify an additional feature, sedge, in the 
ADAR 5500 imagery, but following preliminary visual assessment we determined the   
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Table 1.  A comparison of the remotely sensed data specifications used in the study. 
 
 
 
 
    Spatial Spatial Spectral     Radiometric 

Sensor Type of Imagery Resolution Extent* Bands Spectral Sampling Spectral Range Resolution 
HyMap  Hyperspectral 3.5 - 4m 2.5km x 20km 126 VIS 15nm 450nm - 890nm  12 bit 

     NIR 15nm 890nm - 1350nm  
     SWIR1 13nm 1400nm - 1800nm  
          SWIR2 17nm 1950nm - 2480nm   

ADAR 5500 Multispectral 2m 2km x 3km 4 Band 1(Blue)  460nm - 550nm 8 bit  
   (per frame)  Band 2 (Green) 520nm - 610nm  
     Band 3 (Red) 610nm - 700nm  
          Band 4 (Near Infrared) 780nm - 920nm   

Landsat ETM+ Multispectral 30m 185km x 185km 6 Band 1 (Blue) 450nm - 515nm 8 bit 
     Band 2 (Green) 525nm - 605nm  
     Band 3 (Red) 630nm - 690nm  
     Band 4 (Near Infrared) 750nm - 900nm  
     Band 5 (Infrared) 1550nm - 1750nm  
          Band 7 (Infrared) 2080nm - 2350nm   
        
* Estimates are approximate spatial extent; after georeferencing spatial extent may be reduced slightly due to topography  
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results were below an acceptable level of accuracy.  This resulted in a total of three 
training ROI classes (i.e., water, shadow, and everything else) considered to classify the 
ADAR 5500 data. 
 
We ran the Jeffries-Matusita ROI separability measure to quantitatively evaluate the 
statistical separability of the training ROI classes used for the multispectral image 
classifications (Richards 1999)(Table 2).   The output separability values range from 0-2, 
with values falling below 1 suggesting poor or unacceptable separability and values 
above 1.9 indicating the classes have good separability (Richards 1999).      
 
 
Table 2.  Jeffries-Matusita ROI separability results for the multispectral training classes. 
 
             Landsat ETM+              ADAR 5500 
 Big Creek Bighorn Crags Big Creek Bighorn Crags 

  Water Water Water Water 

Shadow 1.991 1.948 1.915 1.721 

Everything Else 1.985 1.999 1.97 1.991 
 
 
Big Creek Study Site 
We used the Spectral Angle Mapper (SAM) classification algorithm for both the Landsat 
ETM+ and ADAR 5500 datasets at the Big Creek study site.  The SAM classification 
algorithm determines the similarity between image spectra and training ROI spectra 
based on the angle between them calculated as a vector in n-dimensional space, where 
“n” equals the number of input bands or dimensionality (Kruse et al. 1993).  Smaller 
angles represent better matches to ROI reference spectra.  We adjusted the maximum 
allowable angle across a range starting at 0.1 radians up to 3.0 radians to determine the 
best acceptable angular tolerance.  This algorithm is relatively insensitive to changes in 
scene illumination and albedo effects (Kruse et al. 1993), which may have contributed to 
the success of this approach applied to a landscape that is highly influenced by drastic 
changes in image brightness caused by topography and shadows. 
 
Bighorn Crags Study Site 
Following numerous attempts to apply traditional supervised classification algorithms to 
the Landsat ETM+ data in the Bighorn Crags study area, we concluded that the best 
approach was using a 2-D scatter plot incorporating two near-infrared spectral bands (i.e., 
Band 4 vs. Band 5).  Water exhibits very low spectral response patterns in the near-
infrared region of the EM spectrum and would expectedly be located near the lowest 
spectral values on both axis of the scatter plot.  By exploiting this known spectral feature 
characteristic, we subjectively selected and iteratively refined a group of pixels located in 
the lower left corner of the 2-D scatter plot (Figure 2).  We exported the selected pixels as 
ROI’s and produced a “standing water” classification image. 
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Figure 2.  2-D scatter plot used to create the Landsat ETM+ standing water classification 
map of the Bighorn Crags study site. 
 
We used the Maximum Likelihood algorithm to classify the ADAR 5500 data.  The 
Maximum Likelihood algorithm considers both spectral variance, plotted as a mean 
vector, and covariance of the training ROI’s (Jensen 2000).  The underlying assumption 
of this algorithm is a Gaussian distribution, which is a reasonable assumption for 
common spectral classes such as water (Jensen 2000).  Based on the spectral response 
pattern and associated statistics of the ROI training classes, a probability density function 
is created that assesses the individual probability for each image pixel.  We designated a 
probability threshold for each ROI training class determined through repetitive 
classification attempts, and any pixel falling within the designated threshold range is 
assigned to the corresponding ROI class. 
 
Hyperspectral Data 
Given the unique attributes of hyperspectral data, such as the ability to map endmember 
sub-pixel fractional abundances, we tested the Mixture Tuned Matched Filter (MTMF) 
classification algorithm (Boardman 1998b).  Initially we ran MTMF on all image 
endmembers identified through the PPI and nDV image processing steps.  We also 
experimented with traditional supervised classification algorithms in attempt to produce 
the most accurate wetland classifications. 
 
Big Creek Study Site 
Given the increased spectral resolution and range of the hyperspectral dataset, we were 
able to identify much finer-scale wetland habitat features than water alone.  We identified 
Standing Water and Sediment (SWS) and Shallow Stream Water (SSW) image 
endmembers (Figure 3).  We used these endmembers to classify wetland habitats 
associated with floodplain and stream features such as side-channels and backwater 
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pools.  We also identified a wet meadow (WM) endmember representative of a mixture 
of sedges and grasses directly associated with water presence (Figure 4). 
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Figure 3.  Shallow Water Sediment (SWS, shown in blue) and Shallow Stream Water 
(SSW, shown in green) endmember spectral profiles. 
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Figure 4.  Wet Meadow (WM) endmember spectral profile. 
 
 
We used the SAM algorithm to classify the SWS and SSW endmembers.  We believe that 
the characteristics of the SAM algorithm (i.e., insensitivity to changes in illumination and 
albedo) contributed to the classification success for these features that commonly exhibit 
variable reflectance patterns due to surface turbulence of flowing water.  We 
experimented with the same angular ranges described above for the multispectral 
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datasets, to assign the angle that produced the most accurate classifications while 
minimizing omission and commission errors. 
 
We used the MTMF algorithm to produce a classification of sub-pixel fractional 
abundances for the wet meadow endmember.  Although the goal was not to quantify the 
accuracy of fractional abundance value, this classification algorithm is potentially the 
best approach to identify small wetland features common to this study area.  MTMF 
builds upon the strengths of both matched filtering and spectral unmixing algorithms 
while avoiding the disadvantages of both (Boardman 1998b).  Matched filtering performs 
partial spectral unmixing and identifies the fractional abundance of a spectral endmember 
on a continuous scale without knowing all of the background endmember signatures 
(Harsanyi and Chang 1994, Boardman et al. 1995).  Spectral unmixing takes advantage of 
the hyperspectral leverage (i.e., an overdetermined solution caused by a greater number 
of spectral bands than unknowns) to solve the linear mixed pixel problem (Boardman 
1993).  The combined strengths of these two algorithms provide a unique and robust 
method to map endmember fractional abundances.  
 
 MTMF results in two image outputs, the first being a Matched Filter (MF) image and the 
second an Infeasibility image.  The best classification accuracies required the useful 
contribution of information from both resulting images combined into a single feature 
classification.  We loaded the MF and Infeasibility images as the axes of a 2-D scatter 
plot diagram and subjectively selected, and iteratively refined, the pixels that exhibited 
high MF scores and low Infeasibility scores (Figure 5) to produce the final emergent 
sedge classification.  Due to the spectral similarities in the vegetation present across the 
Cabin Creek floodplain, we were forced to select image pixels with a minimum MF 
threshold of 0.6.  
 
Bighorn Crags Study Site 
We were not able to identify any image endmembers that classified all water bodies (i.e., 
lakes, ponds, pools) well with the hyperspectral data, and consequently we classified 
standing water in the hyperspectral data using the same strategy described for delineating 
water in the Landsat ETM+ data.  We loaded band 20 (0.727µm) vs. band 33 
(0.9047µm), two near-infrared spectral bands, and selected all of the pixels that were 
located in the lower left corner paying close attention not to select non-water pixels 
(Figure 6).  The 2-D scatter plot is interactively linked to the displayed image, and we 
focused on known areas of standing water (i.e., large ponds and lakes) to decide when the 
pixel selection began to overpredict non-target pixels. 
 
We identified an Emergent Sedge (ES) endmember (Figure 7) located in the sedge 
dominated periphery of one of our training sites.  This endmember was mapped and used 
as a proxy to help locate small emergent wetland sites and also wet meadow areas 
typically associated with amphibian foraging habitat in this study site.  We used the 
MTMF algorithm to map sub-pixel abundances of the ES endmember.  We loaded the 
MF and Infeasibility images as the axes of a 2-D scatter plot diagram and subjectively 
selected the pixels that exhibited high MF scores and low Infeasibility scores (Figure 8) 
to produce the final ES classification. 
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Figure 5.  2-D scatter plot of the Matched Filter and Infeasibility results from the MTMF 
classification algorithm applied to the wet meadow (WM) endmember.  Final classified 
pixels are shown in green while the remaining background image pixels are shown in 
white.   
 

 
 
 
Figure 6.  2-D scatter plot showing the pixel selection used to create the standing water 
class. Final water pixels are shown in blue while all remaining image pixels are shown in 
white 
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Figure 7.  Emergent Sedge (ES) endmember spectral profile.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. 2-D scatter plot of the Matched Filter and Infeasibility results from the MTMF 
classification algorithm applied to the emergent sedge endmember.  Final classified 
pixels are shown in green while the remaining background image pixels are shown in 
white.  
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Accuracy Assessment 
Error matrices serve as the basis for descriptive statistical techniques used to evaluate 
classification accuracy (Lillesand and Kiefer 1994, Congalton and Green 1999).  
Producer’s accuracy is calculated by dividing the total number of correct pixels in a 
category by the total number of pixels actually identified from ground truth reference 
data (Congalton and Green 1999).  Producer’s accuracy represents the probability a true 
positive location on the ground is correctly classified.  User’s accuracy is calculated by 
dividing the total number of correctly classified pixels by the total number of pixels 
classified in that category (Congalton and Green 1999).  User’s accuracy represents the 
probability that a classified image pixel is actually that category on the ground (Story and 
Congalton 1986).  Omission and commission errors are calculated by subtracting 
producer’s and user’s accuracy from 100% respectively. 
 
Currently the ability to perform advanced image classifications has progressed in parallel 
to technological advances, but the corresponding ability to quantify accuracy has not 
followed this progression (Lillesand and Kiefer 1994).  High spatial resolution data (i.e., 
5m or less) commercially available from numerous sensors, challenges the capability of 
GPS receivers to accurately locate points on the ground when the topography is complex 
and canopy cover disrupts a clear view of the sky.  Aside from the technical limitations of 
using GPS in many field study areas, image georeferencing procedures of airborne high 
spatial resolution data sometimes fail to provide highly accurate corrections.  Even with a 
sophisticated GPS/IMU and ray tracing program recording X, Y, and Z coordinates for 
every image pixel (Boardman 1999), drastic fluctuations in ground elevation cause 
significant error in the georeferencing process.  This means the coordinates of certain 
image pixels may be spatially skewed in a non-systematic direction, which makes 
locating individual pixels on the ground extremely difficult if not impossible.  Similar to 
other validation studies involving high spatial resolution data (Aspinall 2002, Marcus 
2002, Crabtree et al., in press), we used the classified imagery as a field map and 
navigated directly from it using obvious features (e.g., lake coves, stream bends, and 
rocky outcrops) as geographic references. 
 
We chose to use groups or clusters of pixels as the sampling unit for the high spatial 
resolution (i.e., ADAR 5500 and HyMap) classification validation.  The Landsat ETM+ 
spatial resolutions are within an expected positional range of accuracy common with 
current GPS receivers, which allowed us to consider individual pixels as a sampling unit.  
We did not want to exclude any sites large enough in spatial extent to fill a 30 m pixel, 
because many important wetland sites are much smaller than the spatial resolution of this 
imagery. 
 
There are a number of suggestions published for developing a validation site selection 
scheme, each with their own advantages and disadvantages (Congalton 1991).  Because 
the primary goal of this study was to identify wetland habitats that are low in abundance 
and widely dispersed throughout the scene, we felt the most appropriate validation was to 
visit all of the classified potential wetland sites.  We walked the shorelines of lakes and 
visually searched meadows and backwater areas while in transit between predicted sites, 
and used previously collected field data from the study area (Charles R. Peterson, David 
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S. Pilliod, Crystal Strobl, and Jeremy P. Shive, unpublished data, Pilliod and Peterson 
2001, Pilliod and Peterson 2002) as ground truth to evaluate omission errors. 
 
 
CLASSIFICATION RESULTS AND DISCUSSION 
Big Creek Study Site 
The wetland locations within the Big Creek study site are a combination of primarily 
small ponds, wet meadows, and stream associated features such as pools and backwater 
channels.  Many of the wet meadow sites have small ephemeral pools of water that were 
difficult to accurately detect.  A total of 30 wetland sites exist within this study area 
based on past field surveys and newly located sites.  Both multispectral datasets 
performed poorly at this study site while the hyperspectral data (combined) performed 
above average (Table 3).   
 
Table 3.  Accuracy assessment summary table for the Big Creek study site. 
 

  
Producer's 
Accuracy 

User's 
Accuracy

Overall 
Accuracy

Omission 
Error 

Commission 
Error 

Landsat ETM+ (Water) 0% 0% 0% 100% 100% 

ADAR 5500 (Water) 26.7% 72.7% 39.0% 73.3% 27.3% 

HyMap (SWS) 43.3% 92.9% 59.1% 56.7% 7.1% 

HyMap (SSW) 23.3% 100% 37.8% 76.7% 0% 

HyMap (WM) 30.0% 56.3% 39.1% 70% 43.8% 

HyMap (Combined) 83.3% 75.8% 79.4% 16.7% 24.2% 
 
 
The Landsat ETM + water classification produced the poorest accuracy results possible 
for a remote sensing application with a producer’s and user’s accuracy of 0%.  Even the 
largest pond within the study site (i.e., Bufo-Moose pond approximately 1400 m2 in size) 
was not detected due to the large spatial resolution of the imagery.  This site is a major 
source breeding pond for Western Toads (Bufo boreas) and Columbia Spotted Frogs 
(Rana luteiventris).  The inability of this dataset to identify a single large wetland site 
questions the applicability of this imagery for inventory and monitoring efforts    
 
Surprisingly the high spatial resolution of the ADAR 5500 data did not substantially 
contribute to a more successful classification of wetland habitat.  The calculated 
producer’s and user’s accuracy were 26.7% and 72.7% respectively.  Three wetland sites 
were falsely overpredicted and confused with the shadow class, while 73.3% (i.e., 
omission error) of the known wetland sites were missed.  The ADAR 5500 imagery best 
identified stream associated features, such as side channels and pools, but did not identify 
wet meadows and small pool locations adequately.  Our attempts to map an indicator 
variable, sedge, were not successful and consequently we were not able to accurately 
identify wet meadow features with the water class alone since the spectral response of 
these sites is dominated by vegetation presence.  The single largest pond, Bufo-Moose 
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pond, was accurately identified while a smaller exposed pond located on the Cabin Creek 
floodplain was unexpectedly missed.   
 
The HyMap hyperspectral data produced some of the highest classification accuracies for 
each individual endmember, and a combined accuracy that far exceeds the results from 
either multispectral dataset.  The clear advantage of the hyperspectral data is the ability to 
identify multiple wetland features and indicator variables such as sedge presence to 
identify small sites.  We calculated producer’s and user’s accuracy for the SWS 
endmember at 43.3% and 92.9% respectively.  This endmember successfully identified 
most small ponds and pools while only slightly overpredicting one location in a forested 
riparian area.   
 
The SSW endmember was used to complement the SWS classification by primarily 
identifying stream associated features, particularly side channels and backwater pools 
that we observed as late season Western Toad breeding sites in 2002.  The producer’s and 
user’s accuracy for the SSW endmember were 23.3% and 100% respectively.  These 
results illustrate the importance of considering multiple measures of classification 
accuracy.  A user’s accuracy of 100% (i.e., 0% commission error) simply means that 
every pixel that was classified as water in the scene is actually water on the ground.  
Reporting this result alone could mistakenly suggest an above average performance of 
this classification when in reality it performed poorly if the goal is to identify all wetland 
habitat in the study site.   
 
The WM endmember was instrumental in identifying the wet meadow and ephemeral 
pool sites commonly missed by the other water related endmembers.  The producer’s and 
user’s accuracy for the WM endmember were 30% and 56.3% respectively.  The WM 
user’s accuracy was the lowest reported at this study site illustrating the difficulty of 
accurately mapping this feature without overpredicting false positive sites.  Even though 
70% (i.e., omission error) of the total sites were missed, the true positive predicted sites 
located wet meadows that no other dataset was capable of predicting.   
 
Individually, each HyMap endmember did not perform particularly well, but the utility of 
this imagery is that all of the features can be combined to produce one superior 
classification.  We calculated a combined producer’s accuracy of 83% (25/30) by 
summing all of the true positive locations among endmembers and divided by the total 
number of wetland sites.  From an inventory and monitoring perspective the omission 
error is the most important measure of success while some overprediction (i.e., 
commission errors) is acceptable if the goal is identify all potential amphibian habitat in a 
study area.   
 
From the standpoint of a herpetologist, the most significant result of the HyMap 
classification is identifying new sites that were not previously known from field surveys.  
We found a new backwater channel with breeding Western Toads and larval Columbia 
Spotted Frogs present.  We discovered a second new backwater channel on the Cabin 
Creek floodplain that was not recognized through on the ground visual-assessment of the 
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area. We also identified a moderate sized forested pond representing a new potential 
breeding site with shallow water depths and an abundance of emergent vegetation. 
     
Bighorn Crags Study Site 
The Bighorn Crags study site is characterized by an abundance of high mountain lakes 
with forested pools and wet meadows dispersed throughout the landscape.  A total of 48 
wetland sites are present within this study site based on previous field surveys and one 
additional site identified through this research. The majority of wetland sites are lakes 
that on average are larger than the largest site in the Big Creek study site, and as a result 
the corresponding classification accuracies are much higher for all datasets (Table 4). 
 
Table 4.  Accuracy assessment summary table for the Bighorn Crags study site. 
 

  
Producer's 
Accuracy 

User's 
Accuracy

Overall 
Accuracy

Omission 
Error 

Commission 
Error 

Landsat ETM+ (Water) 48.9% 100% 65.7% 51.1% 0% 

ADAR 5500 (Water) 61.5% 100% 76.2% 38.5% 0% 

HyMap (Water) 75% 94.7% 83.7% 25% 5.3% 

HyMap (Sedge) 72.9% 89.7% 80.5% 27.1% 10.3% 

HyMap (Combined) 91.7% 89.8% 90.7% 8.5% 10.2% 
 

 
The Landsat ETM+ imagery produced the lowest classification accuracies with 
producer’s and user’s accuracy of 49% and 100% respectively.  A producer’s accuracy of 
49% (i.e., 51% omission error) means that only half of the total true sites were actually 
identified.  The predicted water sites were highly accurate with a commission error of 
0%. 
 
 The wetland sites correctly identified consisted of large lakes and ponds while smaller 
ponds, emergent wetlands, and wet meadows were consistently missed likely due to their 
small spatial extent.  Missed sites included the main source breeding location for 
Columbia Spotted Frogs, known as Frog Pond.  A second crucial site completely missed 
was a smaller emergent wetland, named Axe Handle Meadow, that is the location of the 
only known Western Toad breeding site in the basin (David S. Pilliod, unpublished data).   
 
The ADAR 5500 data produced slightly better results with producer’s and user’s 
accuracy of 61.5% and 100% respectively. The predicted wetland sites were again highly 
accurate (i.e., 0% commission error), but a number of small ponds and wet meadows 
were not identified and not reflected in this measure of accuracy.  An omission error of 
38.5% clearly depicts some limitations of this dataset, even when the wetland features are 
relatively large in size. 
 
Frog Pond, the critically important Columbia Spotted Frog breeding site, was accurately 
identified while numerous wet meadows and forested ponds were missed. Axe Handle 
Meadow was missed again with this dataset and represents a significant error at a site 
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essential for understanding local Western Toad population status.  The primary reason 
many of the wet meadow sites were missed is because we were not able to use an 
indicator variable, such as sedge presence, to assist in the identification of important wet 
and flooded meadow sites.  Wet and/or flooded meadows are an important habitat type 
utilized by amphibian populations in the study area.  These features are extremely 
difficult to predict using solely water features because the spectral response is highly 
influenced by vegetation presence.  The limited number of spectral bands restricts the 
probability of correctly classifying these features, and imagery that provides an increased 
spectral range and spectral resolution will ultimately be needed to successfully model 
these types of wetland sites.   
 
The Hymap hyperspectral data produced the highest classification accuracies of the 
datasets compared in this study.  The water feature alone correctly classified more true 
positive sites than either multispectral datasets with producer’s and user’s accuracy of 
75% and 94.7% respectively.  Two sites were inaccurately overpredicted (i.e., 5.3% 
commission error) and confused with shadow.  A total of 12 sites, which primarily 
consisted of wet meadows, were missed using this classification method.     
 
The ES endmember yielded a slightly less accurate classification compared to the water 
feature with producer’s and user’s accuracy of 72.9% and 89.7% respectively.  We 
evaluated the accuracy of this feature as a predictor of wetland presence and calculated 
accuracy based on ground truth data of all known wetland sites (i.e., a predicted sedge 
site was viewed as a predicted wetland site).  This feature obviously did not correctly 
classify large deep lakes that lacked shallow shorelines with sedge present, but was 
extremely effective at identifying wet meadows and ephemeral pools missed by all other 
classified features and datasets.  We assessed the accuracy of this feature explicitly (i.e., a 
predicted sedge site was evaluated as sedge and not a wetland) to assess how well the 
sedge classification actually performed at predicting sedge presence.  We visited a total 
of 57 predicted sedge sites and calculated a producer’s and user’s accuracy of 98.3% and 
91.8% respectively.  Clearly the high accuracy of this feature supports future 
considerations to use sedge presence as a predictor variable for wetland presence, at least 
in the regions of the western U.S. where sedge presence is highly correlated to wetland 
and amphibian presence.   
 
Although both the water feature and ES endmember produced higher accuracies than the 
multispectral datasets, the real advantage of the hyperspectral data is the capability to 
combine individual feature results for unparalleled accuracy results.  We added all of the 
true positive predictions and divided by the total number of wetland sites present in the 
study site to calculate a combined producer’s accuracy of 91.7% (44/48).  All 
overpredicted sites that led to non-wetland locations were added to calculate a combined 
user’s accuracy of 89.8%.  This level of accuracy provides a near comprehensive 
prediction of all wetland sites present within the study site providing the detailed 
information necessary for effective inventory and monitoring programs. 
 
One of the most significant results from the HyMap classification is the discovery of a 
new forested pond.  We have a thorough and detailed understanding of the wetland 
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habitat available in this study site as a result of ongoing long term repeated survey (David 
Pilliod unpublished data).  In fact, other than a single new pond discovered this summer 
every other wetland location was previously identified and surveyed.  No amphibians 
were observed at this new site, but the characteristics of the pond (e.g., fishless) suggest 
that amphibians may utilize this location sometime during their active season.    
 
Comparison against Traditional Methods 
For a comparison to traditional site selection processes we used USGS 7.5 minute 
topographic (Topo) maps and DOQQ’s to identify all wetland sites labeled on the map or 
clearly visible in the aerial photographs (Figures 9 and 10).  The DOQQ’s used in this 
study are black-and-white, but color DOQQ’s are becoming available in many areas 
providing a more useful dataset for identifying wetland habitat.  The Landsat ETM+ 
classification produced fewer true positive sites than the total recognized from Topo 
maps and DOQQ’s  (note: no DOQQ’s exist over the Bighorn Crags study site).  Across 
our study area, more wetlands would be accurately located if we used traditional sources 
instead of expending effort to classify the Landsat ETM+ imagery.   
 
The ADAR 5500 data successfully identified more wetland sites than traditional Topo 
maps, but slightly less than the DOQQ’s in the Big Creek study site (Figures 9 and 10).  
The combined processing time required to georeference the imagery and classify the 
ADAR 5500 data far exceeds the total amount of time needed to visually interpret 
DOQQ’s.  The greatest limitation of these data is the inability to accurately identify 
indicator variables, such as sedge presence, that can be used as a proxy for predicting 
wetland distributions.   
 
The HyMap hyperspectral data clearly produced the greatest accuracies while providing a 
fine-scale level of information instrumental in understanding amphibian habitat 
distributions in the study area.  Each individual endmember did not produce classification 
accuracies significantly better than the other datasets in this study excluding Landsat 
ETM+ (Figures 9 and 10).  However, when all of the endmember accuracies are 
combined, this dataset yields the greatest accuracies accomplished in this study.   
 
 
Assessment of Error and Bias  
We performed all image classification efforts following a preliminary site survey and 
ground training data campaign.  In addition, our background knowledge of the study area 
compiled through multiple years of previous field based surveys provides an informed 
perspective of the current amphibian habitat distributions.  We made a number of 
subjective decisions concerning classification thresholds, training data pixel selection, 
and decisions on the final “best” classification map.  These decisions are influenced by 
our familiarity with the study area and would expectedly differ from a classification 
effort performed with no background knowledge of the study area. Typically prior to 
inventory surveys little or no detailed background information is available for a study 
area potentially complicating the effort required to create a comparably accurate 
classification.  It would be beneficial to repeat this study in an  
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Figure 9.  A comparison of correctly classified sites resulting from different data sources.  
The numbers above each dataset represents the total number of true positive sites 
predicted by each classified dataset of the 30 total wetland sites present in the Big Creek 
study site. 
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Figure 10.  A comparison of correctly classified sites resulting from different data 
sources.  The numbers above each dataset represents the total number of true positive 
sites predicted by each classified dataset of the 48 total wetland sites present in the 
Bighorn Crags study site.  (* note: the ADAR 5500 coverage did not extend over the  
entire Bighorn Crags study site and consequently the total number of wetlands sites was 
reduced to 40) 
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unfamiliar region and compare the results to determine widespread application in 
inventory and monitoring programs. 
 
We chose to navigate to all predicted sites using the final classification map as a 
reference opposed to using GPS and navigating using site coordinates.  The high spatial 
resolution of the ADAR 5500 and HyMap imagery require coordinate accuracies 
consistently within 5 m of absolute true ground position.  Without real-time differential 
correction capabilities, GPS coordinates collected in a region with rugged topography and 
forest canopy will rarely be accurate to within 5 m of absolute error.  The georeferencing 
process contributes additional errors to image pixel coordinates and further lowers the 
probability of confidently locating individual pixels in the field.  Until GPS accuracies 
increase and georeferencing algorithms advance, the assessment of high spatial resolution 
imagery will remain difficult and influenced by error.        
 
Costs of Imagery 
The total cost of each remotely sensed dataset needs to be evaluated if these technologies 
are going to be considered or actually become incorporated into inventory and monitoring 
programs typically constrained by funding.  The financial reality of many long-term 
research initiatives limits the possibility of incorporating expensive technology that may 
only perform marginally better than a less expensive approach.  A cost comparison of the 
imagery provides a perspective to consider accuracy and knowledge gained from a 
financial perspective.  
 
Satellite based data will normally cost less than airborne imagery because many of the 
mobilization costs and acquisition logistics are no longer a substantial consideration.  The 
Landsat ETM+ data was the most inexpensive data set acquired, regardless of the 
unfortunate geographic location of the study area that spans two adjacent Landsat scenes 
boundaries.  A Landsat scene costs $600 for a Level 1G radiometrically and 
geometrically corrected dataset with each additional scene offered at a reduced rate of 
$250 (http://edcdaac.usgs.gov/pricing_policy.html).  Considering the additional handling 
fee of $5, the total cost of the Landsat ETM+ data was $855 (Table 5).   
 
The ADAR 5500 dataset is the second most expensive imagery collected and has a 
number of acquisition fees and financial considerations associated with a specific 
contracted collection.  Many of the costs we are reporting reflect the logistical 
considerations for the contracted data collection of this project, and the costs may be 
variable depending on a different contract and extent of data collection.  Mobilization 
fees that cover the estimated number of images contracted, and the corresponding 
estimated number of flight and standby days required, adds to a total of $4000.  The 
image acquisition fees for the total area contracted in this data collection cost $11500, 
and includes expenses for flight operations engineer, insurance, and associated costs for 
the data capture.  It is important to note that the contracted data collection covered a 
much larger spatial extent than this study area alone, and much of the data collected were 
not used for our research. This would lower this category total but it is hard to estimate 
how much cost would appropriately be deducted, so we approximated a cost of about 2/3 
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the total equaling $7660.  There are also post capture processing fees of $2000 for 
vignetting corrections and band-to-band coregistration for all images.   
 
The ADAR data are collected as overlapping frames imposing a large amount of 
processing time needed to georeference and mosaic the scenes into one image.  Positive 
Systems, Inc. offers the DIME software package that is designed specifically for 
georeferencing and mosaicking ADAR 5500 data and costs $1700 for the site registration 
and on-site training.  There are 25 free processing credits provided with the site license, 
but additional costs of “image credits” for $5 each are needed to process and save output 
images.  We could not use this program for the Bighorn Crags study site (i.e., DOQQ’s 
are required as a basemap layer), so we did not consider any additional image credit costs 
because they were not needed for our research.  These additional costs are mentioned as 
considerations for larger studies incorporating this data type.  Adding up all of acquisition 
expenses sums to a total of $15360 for the entire study area (Table 5).   
 
The HyMap hyperspectral data was the most expensive dataset collected over the study 
area.  HyMap data are priced on a per flightline basis of $6000, and included in these 
costs are image post processing services such as atmospheric and geometric corrections.  
We collected one flightline of hyperspectral data over the Bighorn Crags study area and 
two flightlines over the Big Creek study area creating a total cost of $18000 (Table 5).  It 
is important to note that the Big Creek study area could have been covered in a single 
flightline if appropriately planned, and this would have reduced the total number of 
flightlines dropping HyMap behind the ADAR 5500 sensor in total costs.  The reported 
costs reflect the value at the time of our data acquisition and have since lowered in price 
with cost reduction incentives for larger data collects.   
 
Table 5.  A comparison of imagery costs. 
 

Sensor Costs 
Landsat ETM+   

Single Scene 600
(x2 w/ reduced cost) 250

Handling Charge 5
  $855 
ADAR 5500   

Mobilization* 4000
Image Acquisition* 7660

Post Capture Processing* 2000
DIME Software 1700

 $15,360 
HyMap   

Single Flightline* 6000
(x3) 18000

  $18,000 
* Reported costs are variable 
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Processing Time    
This category is an additionally important consideration that must be evaluated when 
suggesting the most appropriate imagery for amphibian inventory and monitoring 
initiatives.  Total processing time is very difficult to evaluate because we expect 
considerable variability in the length of time needed for different people to perform the 
same processing steps.  This will certainly influence the amount of time and effort needed 
to accomplish the necessary image processing steps.  We provide a summary of the time 
we expended to process and classify each dataset.  
 
We made some background assumptions while assessing the total processing time that 
can be compared between analysts.  First, we assumed that an image analyst is already 
trained in traditional remote sensing principles, processing, and applications, and we did 
not account for learning time except when necessary (i.e., hyperspectral image 
processing).  Secondly we also impose a requirement, as part of the preliminary 
processing step, 7 days or 56 hours of ground training data collection and/or ground 
reconnaissance at each study site to become familiar with the study area prior to any 
image processing effort.  
 
The Landsat ETM+ data took the least amount of time to process and classify.  The data 
were provided already mosaicked and the remaining image processing time consisted of 
converting the DN values to at-sensor reflectance.  We estimated this step to take about 2 
days, or 16 hours.  The image classification process includes time for ROI training class 
selection and refining, and experimental testing of classification algorithm applications 
that we estimated to total 10 days, or 80 hours.  Including the initial ground truth 
campaign, total time expenditure results in 19 days, or 152 hours, to fully process and 
classify the Landsat ETM+ data (Table 6).   
 
The ADAR 5500 data took the second greatest amount of time to process and was almost 
identical to the amount of effort expended on the Landsat multispectral dataset.  The 
DIME software training took 2 days, or 16 hours, to complete in which time the Big 
Creek scenes were georeferenced and mosaicked.  We spent an additional day, or 8 
hours, attempting to manually mosaic the Bighorn Crags images before deciding to leave 
them in the raw format due to undesirable results.  Similar to the Landsat data, we 
estimated 10 days, or 80 hours, for image classification time including ROI selection and 
the testing numerous classification algorithms.  Including the time needed for the ground 
truth campaign, the total estimated processing time for the ADAR 5500 data was 20 days 
or 160 hours (Table 6). 
 
The HyMap hyperspectral data unquestionably took the greatest amount of time to 
process and classify attributed to the total time of learning the specifics of hyperspectral 
data analysis techniques and applications.  Many of the common hyperspectral image 
processing steps are unique to this data type, and are not encountered working with 
multispectral data.  We attended an hyperspectral training short-course that occurred over 
5 days, or 40 hours, which formed the foundation of our knowledge of hyperspectral 
analyses.  We suggest this training as a precursor for correctly and effectively processing 
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hyperspectral data, and consider this training part of the processing effort that should be 
included.  We estimate the georeferencing procedures lasted 10 days, or 80 hours, with 
the majority of the time attributed to learning the correct processing steps specific to 
hyperspectral data and understanding various results.  We performed data reduction 
techniques, such as the MNF transform, PPI, and the n-D Visualizer which lasted 15 
days, or 120 hours, with much of the processing time a result of redundant testing of 
processing steps to better understand intermediate results.  Finally, we estimate the image 
classification procedure took a total of 10 days, or 80 hours of time to complete with 
many repetitive steps interpreting the results and refining the input parameters.   This 
results in a total of 47 days, or 376 hours, to complete the hyperspectral data analyses 
(Table 6).   
 
Table 6.  A comparison of categorized image processing times and associated time. 
 

Sensor Processing Step Time (days) Time (hours) 
  Ground Training 7 56 
Landsat ETM+ Reflectance Conversion 2 16 

  Image Classification 10 80 
   19 152 
  Ground Training 7 56 

ADAR 5500 Georeferencing/Mosaic 3 24 
  Image Classification 10 80 
   20 160 
  Ground Training 7 56 

HyMap  Hyperspectral Training 5 40 
  Georeferencing 10 80 
  Data Reduction 15 120 
  Image Classification 10 80 
    47 376 

 
 
CONCLUSIONS 
Illustrated through this comparative application and assessment, it is clearly recognized 
that different scales of remotely sensed data will produce varying accuracy results within 
the same study area.  From an inventory and monitoring perspective, the dataset that 
provides the most cost-effective and comprehensive habitat information is the most 
desired.  Our results provide insight into the relative performance of three vastly different 
dataset for predicting amphibian habitat and we offer some suggestions for further 
evaluation and future inventory and monitoring applications. 
 
The Landsat ETM+ sensor has traditionally been viewed as a valid resource for numerous 
natural resource applications due to the consistency and availability of data.  For some 
applications (e.g., forest fragmentation studies) the 30 m spatial resolution of this dataset 
may be appropriate because the scale of observation correctly corresponds to the scale of 
processes governing the feature of interest.  Unfortunately many wetland sites most 
important for amphibians are typically not large lakes but smaller isolated ponds less than 



 188

30 m2 in area.  The results from both study sites reveal a significant limitation of this 
imagery for accurate identification of wetland habitat regardless of the inexpensive costs 
of these data.   
 
The ADAR 5500 data performed below expected levels of accuracy even though this 
imagery exhibits the highest spatial resolution compared in this study.  Given the fact that 
many of the wetland sites within the study are small in spatial extent, this dataset would 
expectedly classify these locations most accurately.  We feel that the limited number of 
spectral bands contributed to the difficulties of distinguishing water features from other 
spectral classes such as shadow.  The ADAR 5500 sensor collects only a single band in 
the near-infrared spectral wavelengths.  We found that the near-infrared region was 
paramount in providing spectral information necessary for delineating water from other 
features, and because these data lack multiple near-infrared spectral bands, classifying 
water features was more difficult.   
 
Aside from considering the accuracy statistics, potentially the most important result from 
the HyMap image classification is that new previously unknown wetland sites were 
discovered in areas that have been repeatedly surveyed on the ground.  These results are 
similar to another study in Yellowstone National Park where new amphibian breeding 
sites were located in unexpected areas (Crabtree et al., in press). The ultimate goal of an 
inventory program is to comprehensively survey all available habitats within a study area, 
and the HyMap hyperspectral data exhibit the best potential for accomplishing this goal 
by providing near comprehensive identification of wetland habitat within the study area.  
The goal of monitoring programs is to understand how particular habitat features are 
changing over time.  Given the ability to map fine scale wetland features, we can begin to 
subdivide predicted habitat into specific types of amphibian habitat such as breeding, 
foraging, and overwintering.  These wetland features can be used as a surrogate to infer 
changing population status and habitat conditions across large landscapes.  By identifying 
particular habitat features, such as the abundance of emergent sedge, we can begin to 
extrapolate distribution and occurrence  predictions to other areas were there are no field 
data.  
 
The hyperspectral data certainly have the capability to be successfully incorporated into 
inventory and monitoring programs, but warrants additional research to assess 
repeatability and application in diverse environmental landscapes.  One immediate 
limitation would be the large cost and processing time associated with collecting 
hyperspectral imagery over large spatial extents.  Costs have already begun to drop since 
we started this research and will expectedly continue to decrease as this technology 
becomes more common.  Hyperspectral imagery should be considered a valuable tool for 
future inventory and monitoring programs with new potential applications yet to be 
explored.    
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