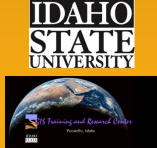


Effect of Grazing Treatment on Soil Moisture in Semi-arid Rangelands

Keith T. Weber, GISP Bhushan Gokhale Idaho State University

Project Focus

- This four-year study uses GIS and remote sensing to:
 - Examine specific drought effects relative to livestock grazing/rest treatments and bare earth exposure
 - Model and monitor rangeland condition
 - Forecast rangeland health/condition using cellular-automata and Markov chain analysis


Interesting Findings...

To address our primary study questions, we...

- Fenced
- Pre-sampled
- Instrumented
- This paper is a product of our instrumentation

Focus of this Paper

Compare soil moisture levels at the O'Neal study area across three treatment pastures:

- Simulated Holistic Planned Grazing (SHPG)
- Rest-rotation (RESTROT)
- Total Rest (TREST)

Why Soil Moisture?

- Water is the limiting factor
- Soil moisture typically has a direct relationship with ground cover
- But, is there also a treatment effect? Or interaction?
 - Can grazing animals effect soil moisture?
 - Does the type of grazing have any effect?

DAH(

The Study Area

- The O'Neal Ecological Reserve was donated to ISU's Department of Biological Sciences by Robin O'Neal. This 100 ha site is located about 30 miles south of Pocatello, Idaho.
- Surrounding BLM land adds another 1467 ha.

Soils in the Study Area

The entire study area is McCarey series-McCarey variant.

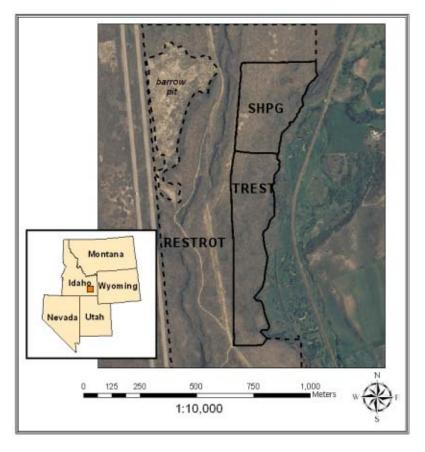
- Shallow, well-drained soils over basalt flows
- Originally formed from weathered basalt, loess, and silty alluvium

Pre-treatment Sampling



 Vegetation cover
Hi-res aerial photography (2" resolution)

Grazing


- Prior to this experiment (i.e., up to and including 2005)
 - No fences existed
 - Grazed as a single rest-rotation allotment (1467ha +)
 - 300 head of cattle for one month (May)

IDAHO

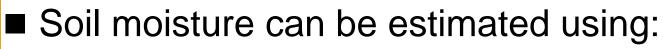
Treatment Pastures

Grazing (cont'd)

■ This experiment:

- Rest-rotation (RESTROT): 300 head of cattle graze for one month (May of each year)(1467ha)
- Simulated Holistic Planned Grazing (SHPG): 125 head of cattle graze for six days (first week in May)(11ha)
- Total Rest (TREST): Zero livestock (13ha)

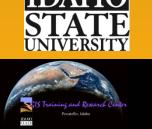
DAH


Grazing Summary

Stocking information

Treatment	Animal Days/ha
Simulated Holistic Planned Grazing (SHPG)	36
Rest Rotation (RESTROT)	6
Total Rest (TREST)	0

Instrumentation (cont'd)


- Electrical resistance blocks
- Tensiometers
- Gravimetric calculations
- Neutron probes
- Time domain reflectrometry

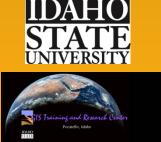
Capacitance sensors

- Decagon ECH₂O-10
- 10cm depth



Instrumentation

- 36 Decagon soil moisture probes
- 12 in each pasture (three replicates of four probes)
- Accuracy= +/-2% Volumetric Water Content (VWC) (after calibration)
 - %VWC estimates the amount of stored water on a volumetric (not gravimetric) basis


Instrumentation (cont'd)

Weather station on site (inside TREST pasture)

Annual Sampling

Vegetation cover (point-intercept transects)

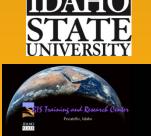
- 50 randomly located plots per treatment
- Two 10 meter transects per plot
- Transects placed perpendicular to each other (forms a "+")
- 100 observations per transect
- Designed to sample SPOT5 satellite pixels

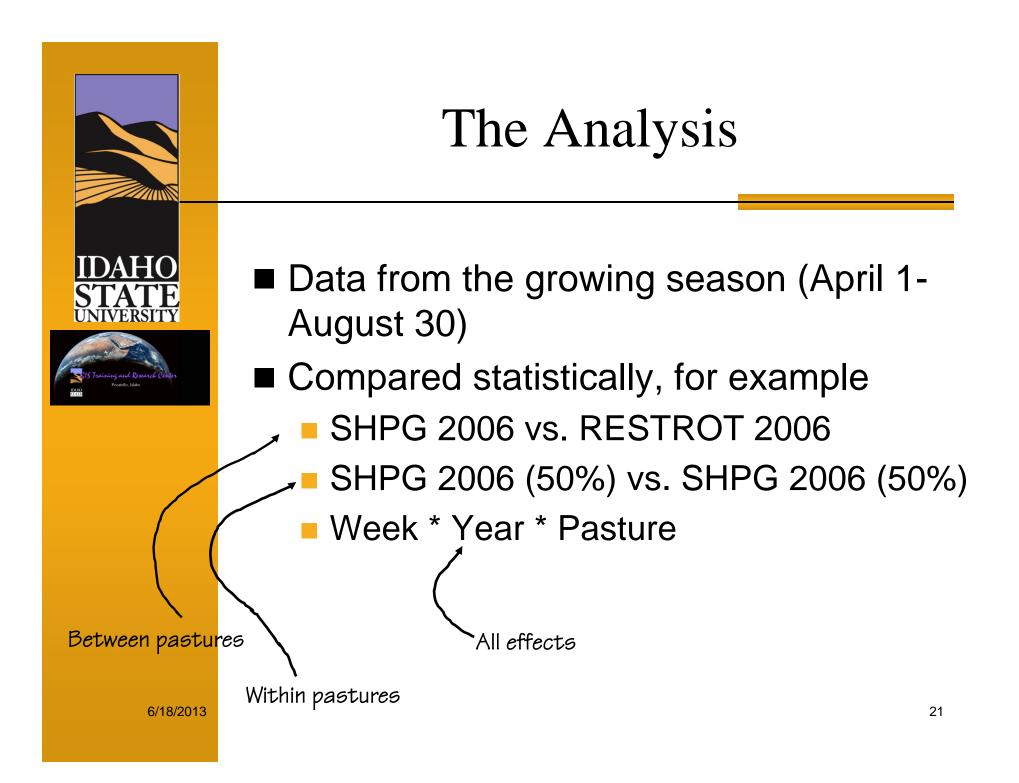
Annual Sampling (cont'd)

- Forage estimates (hoop sampling)
- Photo points
- SPOT5 Satellite imagery

Soil Moisture is a Function of...

- Soil type/structure (no difference can be attributed in this case, as the entire study area is one homogeneous soil type)
 - Plant cover (more plants tend to mean lower water content in the soils...its all in the plants)
 - Animal impact?


Hypothesis to test


Does animal impact (trampling and breaking of soil crust) have a measurable effect on soil moisture?

If so, is the effect positive or negative?

The Data

- Soil moisture (%VWC) was collected every six hours beginning in June 2006
- All probes were calibrated ($R^2 = 0.997$)
- Mean soil moisture was calculated for each day and each week

Statistical Tests

- Daily means tested with single-factor ANOVA
- Weekly means tested with Mixed-Procedures Models
 - Fixed effects calculated with Prasad-Rao-Jeske-Kackar-Harville method.
 - Degrees of freedom follows Kenward-Roger method.

RESULTS

Pre-treatment Conditions

)AH(

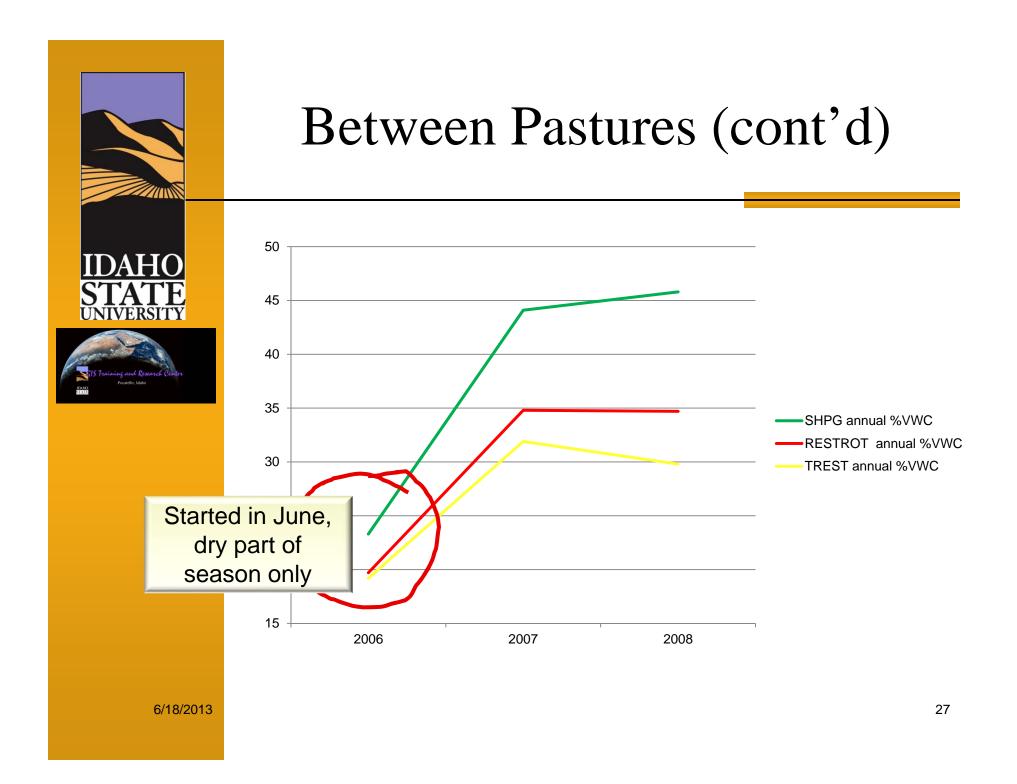
- No difference in vegetation cover (shrubs, grasses, litter, and bare ground exposure)...
 - Save for a difference in shrub cover between the SHPG and TREST pastures (TREST > SHPG)

Vegetation Conditions

)AH(

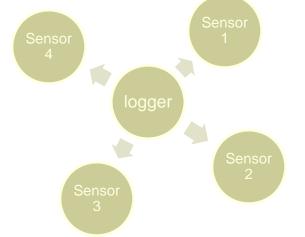
During the study (2006-2008)

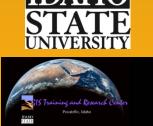
- The difference in shrub cover between SHPG and TREST persisted
- No other changes were found...
- Except litter, which was significantly higher in SHPG beginning in 2007 (P<0.001)


Tests Between Pastures

)A H

SHPG %VWC higher in 2006-2008 (P < 0.001)</p>


	x %VWC		
Treatment	2006	2007	2008
SHPG	23.3	44.1	45.8
RESTROT	19.7	34.8	34.7
TREST	19.2	31.9	29.8


Tests Within Pastures

- Compared daily mean %VWC of 6 sensors vs. 6 sensors
- One pair from each set of loggers
 - SHPG (P = 0.03) different
 - RESTROT (P = 0.15) no difference
 - TREST (P = 0.12) no difference

Comparisons in Context

Within pasture differences were less than between pasture differences

IS Training and Research Conten Research Conten Research Mixed Procedures Model and Type Three Test of Fixed Effects

■ Significant effects (P ≤ 0.05)
■ WEEK (F_{stat}= 92)
■ YEAR x PASTURE (F_{stat}= 20)
■ WEEK x YEAR (F_{stat}= 6)
■ PASTURE (F_{stat}= 5)

The Big Picture

- The differences in soil moisture can be attributed to:
 - Environmental effects (for example...)
 - Soils in week 2 were wetter than week 18
 - Soils in the SHPG pasture were wetter in 2007 than in 2008
 - Soils in week 10 of 2007 were wetter than soils in week 10 of 2008
 - Treatment effects (for example)
 - Soils in the SHPG pasture were wetter than the other pastures

Animal Impact (revisited)

- Does trampling and breaking of soil crust have a measurable effect?
 - Focus on the production pastures which
 - Have statistically different %VWC
 - Diverging soil moisture trends
 - Are both grazed by cattle in May
 - But...

IDAHO STATE UNIVERSITY

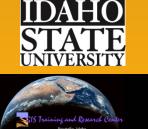
Not all Grazing is the Same

■ Time... Animal Days per hectare

Treatment	Animal Days/ha
Simulated Holistic Planned Grazing (SHPG)	36
Rest Rotation (RESTROT)	6
Total Rest (TREST)	0

Effect on litter (aka mulch)

A likely "mechanism"



Too Much of a "Good thing"

- Six days of grazing at high AD/ha appears to benefit rangelands
- However, 10 days or 14 days or 21 days may damage rangelands

It's all about TIME

Thank You

Questions?

Acknowledgements

This study was made possible by a grant from the National Aeronautics and Space Administration Goddard Space Flight Center. ISU would also like to acknowledge the Idaho Delegation for their assistance in obtaining this grant.

