Project Title and Brief Abstract

NASA RECOVER DSS

- Keith T. Weber¹, John Schnase², Mark Carroll², Roger Gill², Kindra Blair¹, and Maggie Wooten²
- Partners: BLM, Idaho Dept. of Lands, USFS
- Project Summary: Post-wildfire decision support system to assist agency partners in developing a well-informed recovery plan.
 - The RECOVER DSS has been used for 33 wildfires and assisted with the Ft. McMurray, Alberta, Canada wildfire
 - These 33 wildfires burned 1.7 million acres
- Earth Observations applied: Landsat, MODIS, Merra

- 1- ISU GIS TReC
- 2- NASA Goddard Space Flight Center

RECOVER: <u>Rehabilitation Capability Convergence for Ecosystem Recovery</u>

PI: Keith T Weber, ISU GIS TReC (webekeit@isu.edu, 208.282.2757) and Co-I/NASA PI: John L Schnase, NASA GSFC (john.l.schnase@nasa.gov, 301.286.4351)

Purpose & Objective

- RECOVER brings together in a single application all the *information* needed for ES&R and BAER wildfire rehabilitation planning and long-term ecosystem monitoring.
- RECOVER's system components include the RECOVER Server and RECOVER Clients (desktop and mobile decision support applications) that integrate *information* about fire severity with other geospatial data to better inform rehabilitation strategies.

Recent RECOVER Fires
Fire Name Year 2019 2019 2019 2019 2019 2019 2019 2019

Approach

- RECOVER team matured both Server and Client and increased capabilities to become a full production environment.
- Includes full geospatial coverage across 11 western states.
- New end-users at the USFS, NPS, and NWS engaged along with Idaho Transportation Dept.
- Anticipate increased use of NASA GSFC's High-Performance Science Cloud to facilitate operation of long-term post-fire monitoring with NASA earth observing systems (Wrangler).

Key Milestones

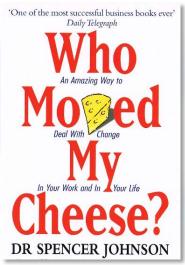
Milestone Statement	Date			
Offer a webinar for partners	04/17			
Formalize relationships/agreements with partners to continue RECOVER	06/17			
Complete "Wrangler", long-term monitoring automation	07/17			

$$ARL_{Start} = 1$$

 $ARL_{Most\ Recent} = 6$

ARL Goal = 8

Biggest Achievement to Date: The Capability


PI Overall Assessment: Current Status

Summary of Challenges; Problems; Objective Analysis

Getting commitment for continuation by end-user partners

Some prefer doing things as they have always done them

Letting more potential end-users know about RECOVER

Summary of Progress

 On-going discussions and interest from NIFC as well as Idaho state office of BLM, and Idaho Dept. of Lands.

2. V

PI Assessment: Transition Plan (1 of 4)

- An important goal for the RECOVER DSS is to have it accepted into the workflow of our end-user partners
- To a large extent, this acceptance has been achieved
- But, we also need to ensure RECOVER continues following the end of NASA funding

PI Assessment: Transition Plan (2 of 4)

- There is interest!
- Current focus is on ISU's GIS TReC continuing to support/host RECOVER on its servers
 - ISU GIS TReC would maintain current geospatial base layers (n = 25)
 - And host both the Generator, web-maps, and underlying web services

PI Assessment: Transition Plan (3 of 4)

PI Overall Assessment: Transition (4 of 4)

We have the interest (NIFC, BLM, IDL)

Our users are growing (Idaho Dept. of homeland security, Idaho Transportation Department)

The hurdle will be getting our end-user partners to pay for something they have been getting for free

This may include a cost-benefit analysis (completion of the socioecon. part of the project)

Scientists are not sales people

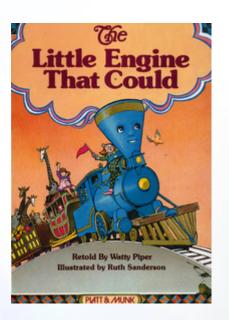
It may help to be part of meetings with these end-user partners, even by teleconference

Budget progress and future plans to spend down the funding by year:

We are planning to request a one-year no-cost extension

PI Overall Assessment: Impact

Honest Opinion



But, will it continue?

Project's Impact/Potential as an Analogy

From our childhood, many of us remember...

We have worked very hard to climb that hill, all the time saying "I think I can"...

That hill is the successful transition with our end-user partners

Relevant Publications, Awards, Accomplishments

- Paper in review (IGAARS)
- Successful presentations at Intermountain GIS Users' Conference (Montana) and the Esri International Users' Conference (UC)
- And, I would like to share results of a user survey (next slide)

Inquiring Minds Want to Know...

Statement	Strongly Agree	View it graphically	
Vegetation/landscape recovery can be adequately monitored using moderate resolution imagery (250 meters per pixel) because recovery trend is very important.	0		
Vegetation recovery requires detailed/high resolution imagery because specific acreages within a fire must be assessed.	16		
Frequent imagery (approximately every two weeks) is more important than seasonal imagery (one image per growing season/year)	4		
Cost of imagery acquisition and processing is an important consideration	15		
Free imagery acquisition is a very important consideration	22		
I would rather have free, frequent, moderate resolution imagery than costly, seasonal, high-resolution imagery	13		
I would rather receive actionable information (imagery showing good recovery versus poor recovery) instead of raw data	16		
Interpreting and understanding the imagery (regardless of its resolution) is always difficult	3		
I prefer completed reports describing long-term monitoring trends for a fire instead of imagery/maps	1		